首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use ab initio density functional calculations to study the chemical functionalization of single-wall carbon nanotubes and graphene monolayers by silyl (SiH(3)) radicals and hydrogen. We find that silyl radicals form strong covalent bonds with graphene and nanotube walls, causing local structural relaxations that enhance the s p(3) character of these graphitic nanostructures. Silylation transforms all carbon nanotubes into semiconductors, independent of their chirality. Calculated vibrational spectra suggest that specific frequency shifts can be used as a signature of successful silylation.  相似文献   

2.
We combine ab initio density functional theory with transport calculations to provide a microscopic basis for distinguishing between good and poor metal contacts to nanotubes. Comparing Ti and Pd as examples of different contact metals, we trace back the observed superiority of Pd to the nature of the metal-nanotube hybridization. Based on large scale Landauer transport calculations, we suggest that the optimum metal-nanotube contact combines a weak hybridization with a large contact length between the metal and the nanotube.  相似文献   

3.
Combining time-dependent density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the dynamics of excited carriers in a (3,3) carbon nanotube at different temperatures. Following an hnu=6.8 eV photoexcitation, the carrier decay is initially dominated by efficient coupling to electronic degrees of freedom. At room temperature, the excitation gap is reduced to nearly half its initial value after approximately 230 fs, where coupling to ionic motion starts dominating the decay. We show that the onset point and damping rate in the phonon regime change with initial ion velocities, a manifestation of temperature-dependent coupling between electronic and ionic degrees of freedom.  相似文献   

4.
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields (>55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the tube-threading magnetic flux, which breaks the time-reversal symmetry and lifts the valley degeneracy. This field-induced symmetry breaking thus overcomes the Coulomb-induced intervalley mixing which is predicted to make the lowest exciton state optically inactive (or dark).  相似文献   

5.
We present a theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is, however, a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons near in energy to each bright exciton. Both effects strongly influence measured lifetime. Assuming a thermal occupation of bright and dark exciton bands, we find an effective lifetime of the order of 10 ns at room temperature, in good accord with recent experiments.  相似文献   

6.
ABSTRACT

An ab initio study, at the MP2/aug-cc-pVTZ level of theory, is performed to study σ-hole bond in binary XH3C···CNY complexes, where X = CN, F, NO2, CCH and Y = H, OH, NH2, CH3, C2H5, Li. This type of interaction is labelled as ‘carbon bond’, since a covalently bonded carbon atom acts as the Lewis acid in these systems. The geometrical and energetic parameters of the resulting complexes are analysed in details. The interaction energies of these complexes are between ?4.97 kJ/mol in (HCC)H3C···CNH and ?23.07 kJ/mol in (O2N)H3C···CNLi. It is found that the electrostatic interaction plays a key role in the overall stabilisation of these carbon-bonded complexes. To deepen the understanding of the nature of the carbon-bonding, the molecular electrostatic potential, natural bond orbital, quantum theory of atoms in molecules and non-covalent interaction index analyses are also used. Our results indicate that the carbon bond is favoured over the C-H···C hydrogen bond in the all complexes considered and may suggest the possible important roles of the C···C interactions in the crystal growth and design.  相似文献   

7.
《Physics letters. A》2006,358(2):166-170
We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding.  相似文献   

8.
We report on ab initio molecular dynamics simulations of the early stages of single-walled carbon nanotube (SWCNT) growth on metal nanoparticles. Our results show that a sp2 bonded cap is formed on an iron catalyst, following the diffusion of C atoms from hydrocarbon precursors on the nanoparticle surface. The weak adhesion between the cap and iron enables the graphene sheet to "float" on the curved surface, as additional C atoms covalently bonded to the catalyst "hold" the tube walls. Hence the SWCNT grows capped. At the nanoscale, we did not observe any tendency of C atoms to penetrate inside the catalyst, consistent with total energy calculations showing that alloying of Fe and C is very unlikely for 1 nm particles. Root growth was observed on Fe but not on Au, consistent with experiment.  相似文献   

9.
We construct a statistical framework for static assemblies of deformable grains which parallels that of equilibrium statistical mechanics but with a conservation principle based on the mechanical stress tensor. We define a state function that has all the attributes of entropy. In particular, maximizing this function leads to a well-defined granular temperature and the equivalent of the Boltzman distribution for ensembles of grain packings. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks.  相似文献   

10.
11.
A systematic study of Fe atom encapsulation and adsorption in armchair SiC nanotubes (SiCNT) with diameters in the range of 5.313 to 10.582 Å has been performed using hybrid density functional theory and a finite cluster approximation. A detailed comparison of the binding energies, equilibrium positions, Mulliken charges, and spin magnetic moments of Fe atoms has been performed for three types of nanotubes. The electronic states, HOMO–LUMO gaps, and changes in gaps with respect to the bare nanotube gaps have been investigated as well. Our results show that the properties of SiCNT can be modified by Fe atom encapsulation and adsorption. Binding energies of the encapsulated and adsorbed systems indicate that these structures are stable and show site dependence. For both cases a significant band gap decrease is observed for type 1 nanotubes enabling band gap tailoring. This decrease is not observed for the other two types with a larger diameter. All structures are found to have magnetic ground states with high magnetic moments indicating the possibility of them being used in spintronics applications.  相似文献   

12.
Heat-bath algorithmic cooling(HBAC) has been proven to be a powerful and effective method for obtaining high polarization of the target system. Its cooling upper bound has been recently found using a specific algorithm, the partner pairing algorithm(PPAHBAC). It has been shown that by including cross-relaxation, it is possible to surpass the cooling bounds. Herein, by combining cross-relaxation and decoherence-free subspace, we present a two-qubit reset sequence and then generate a new algorithmic cooling(AC) technique using irreversible polarization compression to further surpass the bound. The proposed two-qubit reset sequence can prepare one of the two qubits to four times the polarization of a single-qubit reset operation in PPA-HBAC for low polarization. When the qubit number is large, the cooling limit of the proposed AC is approximately five times as high as the PPA-HBAC. The results reveal that cross-relaxation and decoherence-free subspace are promising resources to create new AC for higher polarization.  相似文献   

13.
Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering. In this article, we provide a revised analysis of Huang's original nonradiative multi-phonon(NMP) theory with ab initio calculations. First, we confirmed at the first-principles level that Huang's concise formula gives the same results as the matrix-based formula, and that Huang's high-temperature formula provides an analytical expression for the coupling constant in Marcus theory. Secondly, we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect. The corrected capture rates for defects in GaN and SiC agree well with experiments.  相似文献   

14.
Dislocation core properties of Al with and without H impurities are studied using the Peierls-Nabarro model with parameters determined by ab initio calculations. We find that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility dramatically, leading to macroscopically softening and thinning of the material ahead of the crack tip. We observe strong binding between H and dislocation cores, with the binding energy depending on dislocation character. This dependence can directly affect the mechanical properties of Al by inhibiting dislocation cross-slip and developing slip planarity.  相似文献   

15.
Relaxation of Small Molecules: an ab initio Study   总被引:6,自引:0,他引:6  
The formation mechanism for the equilateral triangle structure of the He3^ cluster is proposed.The curve of the total energy versus the internuclear distance R for this structure has been caclulated by the method of a modified arrangement channel quantum mechanics,The result shows that the curve has a minimal -7.81373 a.u.at R=1.55 a0. The binding energy of He3^ with respect to He He^ He was calculated to be 0.1064 a.u.(about 2.89 eV).This means that the He3^ cluster may be formed in the equilateral triangle structure stable by the interaction of He^ with two helium atoms.  相似文献   

16.
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.  相似文献   

17.
We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical (2, 2) tube. The strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost independent of the tube radius and system dimensionality. This provides an explanation for the observed "optical gap" constancy for different tubes and bulk hexagonal BN.  相似文献   

18.
The structural phase transition between B1 (α-MnS) and B3 (β-MnS) is investigated using a density functional theory method. The structural phase transition pressure Pt from α-MnS to β-MnS, which is determined on the basis of the third-order Birch–Murnaghan equation of states, is 30.75?GPa. Also, the lattice parameters a, the bulk modulus B and pressure derivative of bulk modulus B′, which are generally in good agreement with experiments and other theoretical values, are obtained under zero pressure. For further investigation of the structural phase transition pressure of MnS, the relative volumes V/V 0, the bulk modulus B, first and second pressure derivatives (B′ and B″) of bulk modulus for the two structures of MnS have been calculated under various pressures.  相似文献   

19.
We have applied path integral simulations, in combination with new ab initio based water potentials, to investigate nuclear quantum effects in liquid water. Because direct ab initio path integral simulations are computationally expensive, a flexible water model is parameterised by force-matching to density functional theory-based molecular dynamics simulations. Static and dynamic properties of liquid water at ambient conditions are presented and the role of nuclear quantum effects, exchange-correlation functionals and dispersion corrections are discussed in regards to reproducing the experimental properties of liquid water.  相似文献   

20.
The effects of hydrostatic pressures on the electronic, thermoacoustic and elastic anisotropies of SnO2 in the rutile structure is analyzed up to 18 GPa. It is found that the polycrystalline bulk modulus B increases from 227 to 312 GPa between 0 and 18 GPa while the Young and shear moduli slightly decrease with pressures. The resulting polycrystalline ductility increases with pressures. The speed of the sound for longitudinal waves increases with pressure, while the transverse polarizations and the Debye temperature decrease. Large crystal anisotropy for the shear planes {001} between ? 110? and ? 010? directions under pressures, associated with the phase transition to the Cl2Ca, is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号