首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
钱郁  王参军  石虎山  弭元元  黄晓东 《中国物理 B》2011,20(10):108201-108201
In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self-organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.  相似文献   

2.
We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or "shortcuts", and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponentially distributed.  相似文献   

3.
4.
The explicit determination of the number of monomer-dimer arrangements on a network is a theoretical challenge, and exact solutions to monomer-dimer problem are available only for few limiting graphs with a single monomer on the boundary, e.g., rectangular lattice and quartic lattice; however, analytical research (even numerical result) for monomer-dimer problem on scale-free small-world networks is still missing despite the fact that a vast variety of real systems display simultaneously scale-free and small-world structures. In this paper, we address the monomer-dimer problem defined on a scale-free small-world network and obtain the exact formula for the number of all possible monomer-dimer arrangements on the network, based on which we also determine the asymptotic growth constant of the number of monomer-dimer arrangements in the network. We show that the obtained asymptotic growth constant is much less than its counterparts corresponding to two-dimensional lattice and Sierpinski fractal having the same average degree as the studied network, which indicates from another aspect that scale-free networks have a fundamentally distinct architecture as opposed to regular lattices and fractals without power-law behavior.  相似文献   

5.
Associative memory on a small-world neural network   总被引:1,自引:0,他引:1  
We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the spurious attractors for all values of the disorder of the network.Received: 12 January 2004, Published online: 28 May 2004PACS: 84.35. + i Neural networks - 89.75.Hc Networks and genealogical trees - 87.18.Sn Neural networks  相似文献   

6.
We consider various equilibrium statistical mechanics models with combined short- and long-range interactions and identify the crossover to mean-field behavior, finding anomalous scaling in the width of the mean-field region, as well as in the mean-field amplitudes. We then show that this model enables us, in many cases, to determine the universal critical properties of systems on a small-world network. Finally, we consider nonequilibrium processes.  相似文献   

7.
Yu H  Wang J  Liu Q  Wen J  Deng B  Wei X 《Chaos (Woodbury, N.Y.)》2011,21(4):043125
We investigate the onset of chaotic phase synchronization of bursting oscillators in a modular neuronal network of small-world subnetworks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that this bursting synchronization transition can be induced not only by the variations of inter- and intra-coupling strengths but also by changing the probability of random links between different subnetworks. We also analyze the effect of external chaotic phase synchronization of bursting behavior in this clustered network by an external time-periodic signal applied to a single neuron. Simulation results demonstrate a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this synchronization region increases with the signal amplitude and the number of driven neurons but decreases rapidly with the network size. Considering that the synchronization of bursting neurons is thought to play a key role in some pathological conditions, the presented results could have important implications for the role of externally applied driving signal in controlling bursting activity in neuronal ensembles.  相似文献   

8.
We numerically study a directed small-world network consisting of attractively coupled, identical phase oscillators. While complete synchronization is always stable, it is not always reachable from random initial conditions. Depending on the shortcut density and on the asymmetry of the phase coupling function, there exists a regime of persistent chaotic dynamics. By increasing the density of shortcuts or decreasing the asymmetry of the phase coupling function, we observe a discontinuous transition in the ability of the system to synchronize. Using a control technique, we identify the bifurcation scenario of the order parameter. We also discuss the relation between dynamics and topology and remark on the similarity of the synchronization transition to directed percolation.  相似文献   

9.
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh--Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.  相似文献   

10.
Chunguang Li 《Physica A》2009,388(2-3):240-246
In this paper, we study the memory representation of morph patterns in an attractor neural network model. Since recent studies indicate that biological neural networks exhibit the so-called small-world effect, we study here how the small-world connection topology affects the dynamics of memory representation of morph patterns. We find that the small-world connection has significant effects on the memory representation dynamics in the network. Based on this finding, we postulate that global (or long-range) synaptic connections are mainly responsible for learning patterns that are significantly different from those already stored. Further numerical simulations show that the model based on this hypothesis has several advantages, for example fast learning and good performance.  相似文献   

11.
We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-world networks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates when it exceeds a critical value. We also study the external chaotic phase synchronization of bursting oscillators in the small-world network by a periodic driving signal applied to a single neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest peak value of frequency locking interval in the parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this interval increases with the driving amplitude, but decrease rapidly with the network size. We infer that the externally applied driving parameters outside the frequency locking region can effectively suppress pathologically synchronized rhythms of bursting neurons in the brain.  相似文献   

12.
Mean-field solution of the small-world network model   总被引:14,自引:0,他引:14  
The small-world network model is a simple model of the structure of social networks, which possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either a large or small number of shortcuts.  相似文献   

13.
On the properties of small-world network models   总被引:7,自引:0,他引:7  
We study the small-world networks recently introduced by Watts and Strogatz [Nature 393, 440 (1998)], using analytical as well as numerical tools. We characterize the geometrical properties resulting from the coexistence of a local structure and random long-range connections, and we examine their evolution with size and disorder strength. We show that any finite value of the disorder is able to trigger a “small-world” behaviour as soon as the initial lattice is big enough, and study the crossover between a regular lattice and a “small-world” one. These results are corroborated by the investigation of an Ising model defined on the network, showing for every finite disorder fraction a crossover from a high-temperature region dominated by the underlying one-dimensional structure to a mean-field like low-temperature region. In particular there exists a finite-temperature ferromagnetic phase transition as soon as the disorder strength is finite. [0.5cm] Received 29 March 1999 and Received in final form 21 May 1999  相似文献   

14.
Yan Hong Zheng  Qi Shao Lu 《Physica A》2008,387(14):3719-3728
The spatiotemporal patterns and chaotic burst synchronization of a small-world neuronal network are studied in this paper. The synchronization parameter, similarity parameter and order parameter are introduced to investigate the dynamics behaviour of the neurons. Chaotic burst synchronization and nearly complete synchronization can be observed if the link probability and the coupling strength are large enough. It is found that with increasing link probability and the coupling strength chaotic bursts become appreciably synchronous in space and coherent in time, and the maximal spatiotemporal order appears at some particular values of the probability and the coupling strength, respectively. The larger the size of the network, the smaller the probability and the coupling strength are needed for the network to achieve burst synchronization. Moreover, the bursting activity and the spatiotemporal patterns are robust to small noise.  相似文献   

15.
Changyong Zhu 《Physica A》2010,389(8):1739-1744
In this paper, we study the three-option evolutionary minority game with imitation on small-world networks. Numerical results show that the performance of the system depends on the ways of modifying the gene values as well as the points awarded to the agents belonging to the intermediate populated group. Better cooperation can be obtained through local communication within the agents.  相似文献   

16.
We study Domany-Kinzel cellular automata on small-world network. Every link on a one dimensional chain is rewired and coupled with any node with probability p. We observe that, the introduction of long-range interactions does not remove the critical character of the model and the system still exhibits a well-defined phase transition to absorbing state. In case of directed percolation (DP), we observe a very anomalous behavior as a function of size. The system shows long lived metastable states and a jump in order parameter. This jump vanishes in thermodynamic limit and we recover second-order transition. The critical exponents are not equal to the mean-field values even for large p. However, for compact directed percolation(CDP), the critical exponents reach their mean-field values even for small p.  相似文献   

17.
The brain is a complex system and exhibits various subsystems on different spatial and temporal scales. These subsystems are recurrent networks of neurons or populations that interact with each other. The single neurons are microscopic objects and evolve on a different time scale than macroscopic neural populations. To understand the dynamics of the brain, however, it is necessary to understand the dynamics of the brain network both on the microscopic and the macroscopic level and the interaction between the levels. The presented work introduces one to the major properties of single neurons and their interactions. The physical aspects of some standard mathematical models are discussed in some detail. The work shows that both single neurons and neural populations are excitable in the sense that small differences in an initial short stimulation may yield very different dynamical behaviour of the system. To illustrate the power of the neural population model discussed, the work applies the model to explain experimental activity in the delayed feedback system in weakly electric fish and the electroencephalogram (EEG).  相似文献   

18.
Transistor records of excitable neurons from rat brain   总被引:1,自引:0,他引:1  
Received: 4 February 1998/Accepted: 7 February 1998  相似文献   

19.
孙晓娟  李国芳 《物理学报》2016,65(12):120502-120502
已有研究显示时滞可诱发神经元网络产生随机多共振,但它们主要讨论了神经元间的耦合都存在时滞的情形.然而实际中,有些神经元间的信息传递是瞬时的或时滞很小可以忽略的,即神经元网络中只有部分神经元间的耦合具有时滞,简称部分时滞(若神经元网络内共有l条耦合边,其中有l1条耦合边是具有时滞的,而剩余的耦合边的时滞为零,则我们称这类时滞为部分时滞).本文以Watts-Strogatz小世界神经元网络为研究对象,主要讨论部分时滞对该神经元网络系统响应强度的影响.研究结果指出,系统响应强度随部分时滞的增加呈现多峰的变化态势,即部分时滞可诱发随机多共振现象;而且使系统响应强度达到最优水平的部分时滞的取值区间随随机时滞边概率的增加渐渐变窄,当随机时滞边概率足够大时,系统响应强度只有在时滞位于外界信号周期的整数倍附近才会达到最优.此外,我们还分析了随机连边概率和神经元网络中边的总数对部分时滞诱发的随机多共振现象的影响.结果显示,部分时滞诱发的随机多共振现象对随机连边概率具有一定的鲁棒性,而神经元网络中边的总数对部分时滞诱发的随机多共振的影响则较大.  相似文献   

20.
We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman-Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号