首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embedding molecules in helium clusters has become a powerful technique for the preparation of cold targets for spectroscopy experiments, as well as for the assembly of complex, fragile molecular species. We have recently developed a helium cluster source and a pick-up cell to produce neutral beams of doped helium droplets, to be used as targets in studies on electron collisions with molecules of biological relevance. In the present work we present the results of a series of experiments on electron-impact ionization of helium clusters doped with thymine and 1-methylthymine, where several interesting phenomena were observed, i.e., (i) electron impact ionization of molecular clusters inside the helium droplets leads predominantly to protonated clusters; (ii) the appearance energies are close to the ionization threshold of the helium atom but ionization efficiency curves in addition extend down by several eV; (iii) ionized molecular clusters can undergo metastable decay via the loss of one neutral monomer.  相似文献   

2.
3.
4.
Magnesium clusters grown in helium droplets and ionized with femtosecond laser pulses have been studied by high resolution mass spectrometry. For moderate laser intensities the abundance spectra show characteristic features indicating electronic shell effects. Compared to clusters of s1-electron metals additional shell closures appear resulting from an electron rearrangement. Irradiation with higher laser intensities leads to a decomposition of the magnesium clusters into atomic ions. Due to charge exchange with the surrounding helium matrix mainly singly and doubly charged magnesium ions remain. In addition, the occurrence of MgHeN +-complexes is observed. Their abundance depends on the shape of the laser field, i.e. the laser width and the optical delay when applying the pump-probe technique. Received 2 January 2001  相似文献   

5.
The formation of bare clusters from highly reactive metals can be achieved very effectively by the pickup of atoms into superfluid helium droplets. We report on the experimental observation of electronic shells in small magnesium clusters produced by this method. Mass spectra taken under various ionization conditions show steps and outstanding peaks, as well as pronounced minima. The abundance distribution suggests a transition to full electron delocalization which is complete at about 20 atoms. A so-far-not-reported electron reorganization is observed, leading to a novel shell structure.  相似文献   

6.
7.
Here we report the first mass spectrometric study of negative ions formed via free electron attachment (EA) to nucleobases (NBs) embedded in helium clusters. Pure and mixed clusters of adenine and thymine have been formed by pickup of isolated NB molecules by cold helium droplets. In contrast to EA of isolated molecules in the gas phase we observe a long-lived parent anion NB- and, in addition, parent cluster ions NB-n up to size n=6. Moreover, we show that a low energy electron penetrating into a doped helium droplet causes efficient damage of the embedded nucleobases via resonant, site selective, dissociative electron attachment.  相似文献   

8.
A method of selecting molecules embedded in nanodroplets (clusters) of superfluid helium is proposed, which is based on the selective vibrational excitation of embedded molecules by intense IR laser radiation. This action leads to a significant decrease in size of the excited clusters, after which these clusters are separated with respect to size via scattering of the cluster beam on a crossing atomic beam. The method is described in detail and the possibility of selecting SF6 molecules in liquid helium nanodroplets using the excitation by CO2 laser radiation and the angular separation via scattering on a xenon atomic beam is demonstrated. The results show that, by using this technique, it is possible to separate molecules with respect to isotope (element) composition. Advantages and drawbacks of the method are analyzed.  相似文献   

9.
10.
The work reviewed in the talk explores the possibilities of using molecules immersed in liquid helium as probes to study superfluidity on the microscopic level. For this purpose liquid 4He, 3He and mixed 4He/3He droplets consisting of 103–105 atoms have been doped with single molecules or a small defined number of molecules which form clusters in the droplet interior. The dopants were investigated with high-resolution optical spectroscopy. The electronic and rovibrational spectra show unusually sharp spectral lines and unexpected features such as a distinct gap between the zero phonon line and the phonon wing as well as the free rotations of single molecules. Both are not observed in colder nonsuperfluid 3He droplets and therefore are considered to be new microscopic manifestations of superfluidity. Spectroscopic studies of small p-H2 and o-D2 clusters surrounding a single chromophore molecule formed in the interior of the He droplets are also reported.  相似文献   

11.
12.
The photoionization and photoelectron spectroscopy of He nanodroplets (10(4) atoms) has been studied by photoelectron imaging with photon energies from 22.5-24.5 eV. Total electron yield measurements reveal broad features, whose onset is approximately 1.5 eV below the ionization potential of atomic He. The photoelectron spectra are dominated by very low energy electrons, with less than 0.6 meV. These results are attributed to the formation and autoionization of highly vibrationally excited He(*)(n) Rydberg states within the cluster, followed by strong final state interactions between the photoelectron and the droplet.  相似文献   

13.
An experimental approach is presented that allows for the incorporation of large mass-to-charge ratio selected ions in liquid helium droplets. It is demonstrated that droplets can be efficiently doped with a mass-to-charge ratio selected amino acid as well as with the much bigger m ≈ 12,000 amu protein cytochrome C in selected charge states. The sizes of the ion-doped droplets are determined via electrostatic deflection. Under the experimental conditions employed, the observed droplet sizes are very large and range, depending on the incorporated ion, from 101? helium atoms for protonated phenylalanine to 1012 helium atoms for cytochrome C. As a possible explanation, a simple model based on the size and internal energy dependence of the pickup efficiency is given.  相似文献   

14.
15.
We report on the observation of vortices in superfluid 4He droplets produced in the expansion of liquid He. The vortices were traced by introducing Ag atoms, which clustered along the vortex lines, into the droplets. The Ag clusters were subsequently surface-deposited and imaged via electron microscopy. The prevalence of elongated track-shaped deposits shows that vortices are present in droplets larger than about 300 nm and that their lifetime exceeds a few milliseconds. We discuss the possible formation mechanisms and the stability of the vortices.  相似文献   

16.
17.
The appropriateness of the experimental study of charged clusters in liquid helium has been supported. The interaction potential of negative ions (electron bubbles) with inert clusters formed by Ne, Ar, Kr, and Xe atoms or H2 and N2 molecules has been found. Small clusters levitate at a distance of 13–16 Å above the negative ion. The scalings laws for the properties of charged inert clusters have been discovered and grounded; the number of quantum levels and states of such clusters has been determined. The mobility measurement of charged clusters may provide a new technique of probing the properties of impurity nanoparticles in helium.  相似文献   

18.
Within density functional theory, we have addressed the solvation onset of Ca atoms in small, mixed helium drops. As a case of study, we have considered a Ca@4He50 droplet to which we have first added one single 3He atom. Next, the structure of spin-saturated Ca@3He N3+4He50 droplets with N3=18, 32, 50 and 68 is determined and used to infer the number of 3He atoms needed to solvate the Ca atom for that particular system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号