首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report measurements of the cross correlation between temporal current fluctuations in two capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data by including an interdot Coulomb interaction in a sequential-tunneling model.  相似文献   

2.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

3.
We report measurements of current noise auto- and cross correlation in a tunable quantum dot with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the autocorrelation evolves from super- to sub-Poissonian in the two-lead case, and the cross correlation evolves from positive to negative in the three-lead case, consistent with transport through multiple levels. Cross correlations in the three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of weak output tunneling.  相似文献   

4.
量子点器件的三端电测量研究   总被引:1,自引:1,他引:1       下载免费PDF全文
竺云  王太宏 《物理学报》2003,52(3):677-682
利用三端电测量方法,研究了调制掺杂二维电子气结构的量子点器件输运特性.报道了可分别测量二维电子气电阻和量子点隧穿电阻的实验方法.实验结果表明:量子点的横向耦合控制了量子点器件在小偏压下的电输运特性. 关键词: 自组装量子点 二维电子气 量子隧穿 肖特基接触  相似文献   

5.
We propose a new model of the three-terminal quantum dot hybrid thermoelectric heat engine in which the electrons transfer between two electronic terminals at different temperatures and chemical potentials through two coupled single-level quantum dots. Based on master equation we derive the expressions for the output power and the efficiency. The working region of the hybrid heat engine is determined according to the first and second law of thermodynamics. The performance characteristic curves are plotted and the optimal performance parameters are obtained. Finally, the influence of the non-radiative effect on the optimal performance parameters is discussed in detail.  相似文献   

6.
We study the effects of Kondo correlations on the transmission phase shift of a quantum dot in an Aharonov-Bohm ring. We predict in detail how the development of a Kondo resonance should affect the dependence of the phase shift on transport voltage, gate voltage, and temperature. This system should allow the first direct observation of the well-known scattering phase shift of pi/2 expected (but not directly measurable in bulk systems) at zero temperature for an electron scattering off a spin- 1 / 2 impurity that is screened into a singlet.  相似文献   

7.
Spherical quantum dots containing several electrons are considered for different values of the total spin. Numerical calculations are carried out using the quantum path-integral Monte Carlo method. The dependence of the electron correlations on the dimensionless control quantum parameter q associated with the steepness of the confinement potential is studied. The quantum transition from a Wigner crystal-like state (i.e., from the regime of strongly correlated electrons) to a Fermi-liquid state (“cold” melting) driven by the parameter q is studied in detail. The behavior of the radial and pair correlation functions, which characterize quantum delocalization of the electrons, is considered.  相似文献   

8.
We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows us to envision on-chip single spin manipulation and readout using cavity QED techniques.  相似文献   

9.
Spin-dependent electronic transport through a quantum dot has been analyzed theoretically in the cotunneling regime by means of the second-order perturbation theory. The system is described by the impurity Anderson Hamiltonian with arbitrary Coulomb correlation parameter U. It is assumed that the dot level is intrinsically spin-split due to an effective molecular field exerted by a magnetic substrate. The dot is coupled to two ferromagnetic leads whose magnetic moments are noncollinear. The angular dependence of electric current, tunnel magnetoresistance, and differential conductance are presented and discussed. The evolution of a cotunneling gap with the angle between magnetic moments and with the splitting of the dot level is also demonstrated.  相似文献   

10.
We investigate a beam-splitter experiment implemented in a normal-conducting fermionic electron gas in the quantum Hall regime. The cross correlations between the current fluctuations in the two exit leads of the three terminal device are found to be negative, zero, or even positive, depending on the scattering mechanism within the device. Reversal of the cross correlation sign occurs due to interaction between different edge states and does not reflect the statistics of the fermionic particles which "antibunch."  相似文献   

11.
We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot measurement, the detection process may be quantum limited if the detectors are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. The joint weak measurement of noncommuting observables is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.  相似文献   

12.
Spin-dependent tunneling through a quantum dot coupled to one ferromagnetic and onesuperconducting electrodes is studied in the Andreev reflection (AR) regime. Electricalconductance is calculated within the nonequilibrium Green function technique. Features ofthe AR current involved by the intradot Coulomb correlations (or the dot’s chargingenergy U) and in the presence of the Zeeman splitting of the dotdiscrete level are analyzed in both linear and nonlinear transport regimes. A newinterference effect due to AR is predicted to appear in the case of a weak on-dotrepulsion. Strong Coulomb correlations studied in nonequilibrium situation revealedsignificant modifications of the AR differential conductance occurring only in case ofspin-polarized transmission. Origin of a variety of the multipeak structure of theconductance for the system with the interacting quantum dot, as well as the conditions forthe perfect U-dependent AR transmission are also discussed.  相似文献   

13.
《Current Applied Physics》2015,15(10):1278-1285
We investigate the electron transport through a quantum dot connected with two ferromagnetic leads, by coupling one Majorana doublet laterally to the quantum dot. It is found that Majorana doublet keeps the value of zero-bias conductance to be independent of the shift of structural parameters, including dot level, relative lead-magnetization direction, and magnetic field on the dot. Even in the cases of asymmetric dot-lead couplings, the zero-bias conductance is weakly dependent on the relative lead-magnetization direction. On the other hand, when Majorana doublet is replaced by Majorana singlet, the zero-bias conductance value becomes sensitive to the structural parameters. Via analyzing the respective particle motion processes, the different influences of Majorana doublet and singlet are explained. We believe that this work can be helpful for understanding the peculiar properties of Majorana doublet.  相似文献   

14.
Numerical results for transport properties of two coupled double-level quantum dots (QDs) strongly suggest that under appropriate conditions the dots develop a novel ferromagnetic (FM) correlation at quarter filling (one electron per dot). In the strong coupling regime (Coulomb repulsion larger than electron hopping) and with interdot tunneling larger than tunneling to the leads, an S=1 Kondo resonance develops in the density of states, leading to a peak in the conductance. A qualitative "phase diagram," incorporating the new FM phase, is presented. In addition, the necessary conditions for the FM regime are less restrictive than naively believed, leading to its possible experimental observation in real QDs.  相似文献   

15.
Thermoelectric effects through a serial double quantum dot system weakly coupled to ferromagnetic leads are analyzed. Formal expressions of electrical conductance, thermal conductance, and thermal coefficient are obtained by means of Hubbard operators. The results show that although the thermopower is independent of the polarization of the leads, the figure of merit is reduced by an increase of polarization. The influences of temperature and interdot tunneling on the figure of merit are also investigated, and it is observed that increase of the interdot tunneling strength results in reduction of the figure of merit. The effect of temperature on the thermal conductance is also analyzed.  相似文献   

16.
We study the spin dependent transport through a quantum dot connected to ferromagnetic leads. Using the non-equilibrium generalization of the non-crossing approximation for finite Coulomb repulsion U, we compute the spin polarized conductance, the local average occupancies and the local densities of states in the Kondo regime. We show that transport properties are strongly affected if we allow double occupancy by using a finite value for U. In the framework of our model, we have successfully reproduced the recent experimental finding of an electrically controlled magnetic moment on a carbon nanotube quantum dot coupled to ferromagnetic nickel leads [3]. Besides, in addition to the well known splitting of the Kondo peak in the density of states due to the presence of ferromagnetic leads, we find that the additional splitting due to non-zero bias voltage leads to an unexpected increase of the total conductance, which has also been observed by Hauptmann et al.  相似文献   

17.
《Physics letters. A》2014,378(26-27):1854-1866
We investigate the spin-dependent thermoelectric effect of a Rashba molecular quantum dot coupled with both ferromagnetic leads and a phonon bath in the Kondo regime. A transport formula is derived to deal with the strong electron–electron and electron–phonon interaction with the spin–orbit coupling of arbitrary intensity simultaneously. The numerical results show that only strengthening the electron–phonon coupling can improve the charge thermopower, while even very small spin–orbit coupling can suppress both the thermocharge figure of merit and the thermospin one at the Kondo temperature greatly. It is also found that the electron–phonon coupling in conjunction with the spin–orbit coupling can rebuild Fermi liquid state in the Kondo regime.  相似文献   

18.
A system of an electron with a hydrogenic impurity confined in a two-dimensional anisotropic quantum dot has been investigated. We report a calculation for the binding energy of a donor impurity. The important feature of a donor impurity in a two-dimensional anisotropic quantum dot is obtained via an analysis of the binding energy. The photoionization cross section associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the photoionization cross section of a donor impurity in a two-dimensional anisotropic quantum dot is strongly affected by the degree of anisotropy and the size of the quantum dot.  相似文献   

19.
R. Vali  S. Salehi 《Solid State Communications》2010,150(47-48):2306-2309
By combining the spin dependent transport properties of the ferromagnetic semiconductors with the basic physics of the quantum point contacts, we investigate the spin polarized transport through ferromagnetic semiconductor quantum point contacts. We find that the spin conductance strongly depends on the spin orientation, the magnitude of the spin splitting energy and the shape of the cross sections of the point contacts.  相似文献   

20.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号