首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.  相似文献   

2.
We report on energy-time and time-bin entangled photon-pair sources based on a periodically poled lithium niobate (PPLN) waveguide. Degenerate twin photons at 1 314 nm wavelength are created by spontaneous parametric down-conversion and coupled into standard telecom fibers. Our PPLN waveguide features a very high conversion efficiency of about 10-6, roughly 4 orders of magnitude more than that obtained employing bulk crystals [#!Tanzilli01a!#]. Even if using low power laser diodes, this engenders a significant probability for creating two pairs at a time - an important advantage for some quantum communication protocols. We point out a simple means to characterize the pair creation probability in case of a pulsed pump. To investigate the quality of the entangled states, we perform photon-pair interference experiments, leading to visibilities of 97% for the case of energy-time entanglement and of 84% for the case of time-bin entanglement. Although the last figure must still be improved, these tests demonstrate the high potential of PPLN waveguide based sources to become a key element for future quantum communication schemes. Received 13 July 2001  相似文献   

3.
We present a protocol for large-alphabet quantum key distribution (QKD) using energy-time entangled biphotons. Binned, high-resolution timing measurements are used to generate a large-alphabet key with over 10 bits of information per photon pair, albeit with large noise. QKD with 5% bit error rate is demonstrated with 4 bits of information per photon pair, where the security of the quantum channel is determined by the visibility of Franson interference fringes. The protocol is easily generalizable to even larger alphabets, and utilizes energy-time entanglement which is robust to transmission over large distances in fiber.  相似文献   

4.
Using the signal and idler photons produced by parametric down-conversion, we report an experimental observation of a violation of the Bell inequality for energy and time based purely on the geometric phases of the signal and idler photons. We thus show that energy-time entanglement between the signal and idler photons can be explored by means of their geometric phases. These results may have important practical implications for quantum information science by providing an additional means by which entanglement can be manipulated.  相似文献   

5.
We report on experimental evidence of the preservation of the energy-time entanglement of a pair of photons after a photon-plasmon-photon conversion. This preservation is observed in two different plasmon conversion experiments, namely, extraordinary optical transmission through subwavelength metallic hole arrays and long range surface plasmon propagation in metallic waveguides. Plasmons are shown to coherently exist at two different times separated by much more than their lifetimes. This kind of entanglement involving light and matter is expected to be useful for future processing and storing of quantum information.  相似文献   

6.
We experimentally demonstrate stable and user-adjustable single-photon interference in a 1 km long fiber-optic Mach-Zehnder interferometer, using an active phase control system with the feedback provided by a classical laser. We are able to continuously tune the single-photon phase difference between the interferometer arms using a phase modulator, which is synchronized with the gate window of the single-photon detectors. The phase control system employs a piezoelectric fiber stretcher to stabilize the phase drift in the interferometer. A single-photon net visibility of 0.97 is obtained, yielding future possibilities for experimental realizations of quantum repeaters in optical fibers and violation of Bell's inequalities using genuine energy-time entanglement.  相似文献   

7.
We demonstrate the preservation of entanglement of an energy-time entangled biphoton through a slow light medium. Using the D(1) and D(2) fine structure resonances of Rubidium, we delay one photon of the 1.5 THz biphoton by approximately 1.3 correlation lengths and measure the fourth order correlation fringes. After the group delay the fringe visibility is reduced from 97.0+/-4.4% to 80.0+/-4.8%, but is still sufficient to violate a Bell inequality. We show that temporal broadening is the primary mechanism for reducing the fringe visibility and that smaller bandwidths lead to greatly reduced broadening.  相似文献   

8.
The present paper is devoted to an interpretation of energy-time uncertainty relations for potentials that are constant in time and have different spatial profiles (constant and Gaussian potentials) within the framework of approaches based on axiomatics of quantum theory and nonstationary perturbation theory. The results obtained indicate that the energy-time relation has no strictly axiomatic meaning determined by the Heisenberg uncertainty relations.  相似文献   

9.
We propose a scheme based on using the singlet ground state of an electron spin pair in a double-quantum-dot nanostructure as a suitable setup for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This setup is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons "on demand."  相似文献   

10.
We introduce a computable estimator of block entanglement entropy for many-body spin systems admitting total singlet ground states. Building on a simple geometrical interpretation of entanglement entropy of the so-called valence bond states, this estimator is defined as the average number of common singlets to two subsystems of spins. We show that our estimator possesses the characteristic scaling properties of the block entanglement entropy in critical and noncritical one-dimensional Heisenberg systems. We invoke this new measure to examine entanglement scaling in the two-dimensional Heisenberg model on a square lattice revealing an "area law" for the gapped phase and a logarithmic correction to this law in the gapless phase.  相似文献   

11.
We formulate the energy-time correlation of neutrons slowing down through multiple elastic scatterings in a homogeneous infinite medium. From the correlation result, we obtain the neutron thermalisation time, expressed through special functions appearing in the calculation steps. We validate our theoretical approach by comparing the ensuing formulae with results of Monte Carlo calculations.  相似文献   

12.
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.  相似文献   

13.
We have proposed a quantum system with equally-distant partially-entangled alphabet states which has the minimal mutual overlap and the highly distinguishability,these quantum states are used as the “signal states” of the quantum communication.We have also constructed the positive operator-valued measure for these “signal states” and discussed their entanglement properties and measurement of cntanglement.We calculate the accessible information for these alphabet states and show that the accessible information is closely related to the entanglement of the “signal states”:the higher the entanglement of the “signal states”,the better the accessible information of the quantum system,and the accessible information reaches its maximal value when the alphabet states have their maximal entanglement.  相似文献   

14.
Sudden death of entanglement: Classical noise effects   总被引:2,自引:0,他引:2  
When a composite quantum state interacts with its surroundings, both quantum coherence of individual particles and quantum entanglement will decay. We have shown that under vacuum noise, i.e., during spontaneous emission, two-qubit entanglement may terminate abruptly in a finite time [T. Yu, J.H. Eberly, Phys. Rev. Lett. 93 (2004) 140404], a phenomenon termed entanglement sudden death (ESD). An open issue is the behavior of mixed-state entanglement under the influence of classical noise. In this paper we investigate entanglement sudden death as it arises from the influence of classical phase noise on two qubits that are initially entangled but have no further mutual interaction.  相似文献   

15.
In this work we offer an approach to protect the entanglement based on the anti-symmetric property of the Hamiltonian. Our main objective is to protect the entanglement of a given initial three-qubit state which is governed by Hamiltonian of a three-spin Ising chain in site-dependent transverse fields. We show that according to anti-symmetric property of the Hamiltonian with respect to some operators mimicking the time reversal operator, the dynamics of the system can be effectively reversed. It equips us to control the dynamics of the system. The control procedure is implemented as a sequence of cyclic evolution; accordingly the entanglement of the system is protected for any given initial state with any desired accuracy and long-time. Using this approach we could control not only the multiparty entanglement but also the pairwise entanglement. It is also notable that in this paper although we restrict ourselves mostly within a three-spin Ising chain in site-dependent transverse fields, our approach could be applicable to any nn-qubit spin system models.  相似文献   

16.
We introduce the definition of generic bound entanglement for the case of continuous variables. We provide some examples of bound entangled states for that case, and discuss their physical sense in the context of quantum optics. We raise the question of whether the entanglement of these states is generic. As a by-product we obtain a new many parameter family of bound entangled states with positive partial transpose. We also point out that the "entanglement witnesses" and positive maps revealing the corresponding bound entanglement can easily be constructed.  相似文献   

17.
We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.  相似文献   

18.
We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all nondistillable entangled states. In this way we solve a long standing problem of how "real" is entanglement of bound entangled states. Using the new inequality we also prove the impossibility of local cloning of a known entangled state.  相似文献   

19.
We consider entanglement for quantum states defined in vector spaces over the real numbers. Such real entanglement is different from entanglement in standard quantum mechanics over the complex numbers. The differences provide insight into the nature of entanglement in standard quantum theory. Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. We give a contrasting formula for the entanglement of formation of an arbitrary state of two rebits, a rebit being a system whose Hilbert space is a 2-dimensional real vector space.  相似文献   

20.
We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号