首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the operation of quantum gates for neutral atoms with qubits that are delocalized in space, i.e., the computational basis states are defined by the presence of a neutral atom in the ground state of one out of two trapping potentials. The implementation of single-qubit gates as well as a controlled phase gate between two qubits is discussed and explicit calculations are presented for rubidium atoms in optical microtraps. Furthermore, we show how multiqubit highly entangled states can be created in this scheme.  相似文献   

2.
A scheme of a multiqubit quantum computer on atomic ensembles using a quantum transistor implementing two qubit gates is proposed. We demonstrate how multiatomic ensembles permit one to work with a large number of qubits that are represented in a logical encoding in which each qubit is recorded on a superposition of single-particle states of two atomic ensembles. The access to qubits is implemented by appropriate phasing of quantum states of each of atomic ensembles. An atomic quantum transistor is proposed for use when executing two qubit operations. The quantum transistor effect appears when an excitation quantum is exchanged between two multiatomic ensembles located in two closely positioned QED cavities connected with each other by a gate atom. The dynamics of quantum transfer between atomic ensembles can be different depending on one of two states of the gate atom. Using the possibilities of control for of state of the gate atom, we show the possibility of quantum control for the state of atomic ensembles and, based on this, implementation of basic single and two qubit gates. Possible implementation schemes for a quantum computer on an atomic quantum transistor and their advantages in practical implementation are discussed.  相似文献   

3.
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.  相似文献   

4.
We consider a generic elementary gate sequence which is needed to implement a general quantum gate acting on n qubits-a unitary transformation with 4(n) degrees of freedom. For synthesizing the gate sequence, a method based on the so-called cosine-sine matrix decomposition is presented. The result is optimal in the number of elementary one-qubit gates, 4(n), and scales more favorably than the previously reported decompositions requiring 4(n)-2(n+1) controlled NOT gates.  相似文献   

5.
High‐fidelity universal quantum gates are crucial in quantum computing. Three high‐fidelity universal quantum gates, namely the hybrid controlled NOT gate, the hybrid Toffoli gate, and the hybrid Fredkin gate, on a flying photon qubit and diamond nitrogen‐vacancy (NV) centers, assisted by low‐Q single‐sided cavities, are presented. Errors due to the imperfection of the practical input–output process are detected to improve the fidelity of these quantum gates, which therefore relaxes the requirement on their implementation, since strong coupling is no longer mandatory. In addition, quantum gates have the advantage that they can work faithfully even when the resonant condition among the NV center, the photon, and the cavity is not strictly satisfied, or the NV centers are not identical. The performance and success probability of these quantum gates are analyzed, finding that these schemes are feasible with current technology.  相似文献   

6.
The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction can be considered as a multiqubit register. It can be coupled to other junctions to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.  相似文献   

7.
We propose to implement quantum computing by the on-demand control of the wave packets propagation in helical edge channels of the quantum spin Hall systems (QSHs). Two non-commutative single-qubit gates are realized by the gate voltages applied on the edge channels. The two-qubit controlled phase gate is implemented by the capacitive Coulomb interaction between two adjacent edge channels from two parallel QSHs. A universal set of quantum gates thus can be realized in an all-electrical way. It is also shown that the fidelity and the purity of the controlled phase gate can reach a high value, with both the time delay and the finite width of the wave packets taken into account.  相似文献   

8.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

9.
Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.  相似文献   

10.
《中国物理 B》2021,30(10):100304-100304
Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications. In this work, we develop a fabrication process for the transmon multiqubit device with a niobium base layer,shadow-evaporated Josephson junctions, and airbridges across the qubit control lines to suppress crosstalk. Our results show that these multiqubit devices have well-characterized readout resonators, and that the energy relaxation and Ramsey(spin-echo) dephasing times are up to ~40 μs and 14(47) μs, respectively. We perform single-qubit gate operations that demonstrate a maximum gate fidelity of 99.97%. In addition, two-qubit vacuum Rabi oscillations are measured to evaluate the coupling strength between qubits, and the crosstalk among qubits is found to be less than 1% with the fabricated airbridges. Further improvements in qubit coherence performance using this fabrication process are also discussed.  相似文献   

11.
Since Controlled-Square-Root-of-NOT (CV, CV?) gates are not permutative quantum gates, many existing methods cannot effectively synthesize optimal 3-qubit circuits directly using the NOT, CNOT, Controlled-Square-Root-of-NOT quantum gate library (NCV), and the key of effective methods is the mapping of NCV gates to four-valued quantum gates. Firstly, we use NCV gates to create the new quantum logic gate library, which can be directly used to get the solutions with smaller quantum costs efficiently. Further, we present a novel generic method which quickly and directly constructs this new optimal quantum logic gate library using CNOT and Controlled-Square-Root-of-NOT gates. Finally, we present several encouraging experiments using these new permutative gates, and give a careful analysis of the method, which introduces a new idea to quantum circuit synthesis.  相似文献   

12.
王晓霞  张建奇  於亚飞  张智明 《中国物理 B》2011,20(11):110306-110306
We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities. In our scheme, each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields. During the gate operation, the quantum dots undergo no transition, while the system can acquire different phases conditional on different states of the quantum dots. With the application of the single-qubit operations, two-qubit controlled phase gates can be realized.  相似文献   

13.
Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.  相似文献   

14.
Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. Realization of the B gate is illustrated with an example of charge-coupled superconducting qubits for which the B gate is seen to be generated in shorter time than the CNOT gate.  相似文献   

15.
吴向艳  徐艳玲  於亚飞  张智明 《物理学报》2014,63(22):220304-220304
Non-Clifford操作不能在量子纠错码上自然横向实现, 但可通过辅助量子态和在量子纠错码上能横向实现的Clifford操作来容错实现, 从而取得容错量子计算的通用性. 非平庸的单量子比特操作是Non-Clifford操作, 可以分解为绕z轴和绕x轴非平庸旋转操作的组合. 本文首先介绍了利用非稳定子态容错实现绕z轴和绕x轴旋转的操作, 进而设计线路利用魔幻态容错制备非稳定子态集, 最后讨论了运用制备的非稳定子态集模拟任意非平庸单量子比特操作的问题. 与之前工作相比, 制备非稳定子态的线路得到简化, 成功概率提高, 且在高精度模拟任意单量子比特操作时所消耗的非稳定子态数目减少了50%. 关键词: 容错量子计算 非稳定子态 魔幻态 Clifford操作  相似文献   

16.
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.  相似文献   

17.
Among a number of candidates, photons have advantages for implementing qubits: very weak coupling to the environment, the existing single photon measurement technique, and so on. Moreover, commercially available fiber-optic devices enable us to construct quantum circuits that consist of one-qubit operations (including classically controlled gates). Fiber optics resolves the mode matching problems in conventional optics and provides mechanically stable optical circuits. A quantum Fourier transform (QFT) followed by measurement was demonstrated with a simple circuit based on fiber optics. The circuit was shown to be robust against imperfections in the rotation gate. The error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation for 100 qubits. The error probability can be further reduced to achieve successful QFT of 1024 qubits by taking the majority of the accumulated results. As is well known, QFT is a key function in quantum computations such as the final part of Shor’s factorization algorithm. The present QFT circuit, in combination with controlled unitary gates, would make possible practical quantum computers. Possible schemes of realizing quantum computers in this line are explored.  相似文献   

18.
Quantum logical operations using two-dimensional NMR have recently been described using the scalar coupling evolution technique [J. Chem. Phys. 109, 10603 (1998)]. In the present paper, we describe the implementation of quantum logical operations using two-dimensional NMR, with the help of spin- and transition-selective pulses. A number of logic gates are implemented using two and three qubits with one extra observer spin. Some many-in-one gates (or Portmanteau gates) are also implemented. Toffoli gate (or AND/NAND gate) and OR/NOR gates are implemented on three qubits. The Deutsch-Jozsa quantum algorithm for one and two qubits, using one extra work qubit, has also been implemented using spin- and transition-selective pulses after creating a coherent superposition state in the two-dimensional methodology.  相似文献   

19.
This paper considers the realizability of quantum gates from the perspective of information complexity. Since the gate is a physical device that must be controlled classically, it is subject to random error. We define the complexity of gate operation in terms of the difference between the entropy of the variables associated with initial and final states of the computation. We argue that the gate operations are irreversible if there is a difference in the accuracy associated with input and output variables. It is shown that under some conditions the gate operation may be associated with unbounded entropy, implying impossibility of implementation. PACS number: 03.65  相似文献   

20.
朱诗亮  汪子丹 《物理》2005,34(11):793-796
用量子空腔耦合的超导电荷比特器件被认为是实现量子信息处理的相当有希望的体系之一.如何在这种可集成的量子体系中实现高保真度的操作是量子信息处理领域的重要课题.文章介绍作者最近提出的在量子腔耦合的超导量子比特中用具有内禀容错功能的几何操作来实现普适量子逻辑门,产生多比特量子纠缠及实现量子纠错编码的一个可行方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号