首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Platinum nanogravimetry potentiodynamic profiles in cyclic scans have shown significant dependence on alkali metal chloride concentration and effect of cations. Pt EQCM electrode mass drift in consecutive cyclic scans in 0.5 M LiCl, NaCl and CsCl was negative, similarly to the mass drift in aqueous solutions of H2SO4 with HCl additive, and this was due to electrochemical corrosion of platinum. The mass loss was prevented and inverted in 3 M solutions in the negative part of the scan, and the effect was attributed to shells of ion pairs firmly attached to the electrode surface via nonequilibrated Pt surface sites generated in the anodic scan. The increase in mass correlated with the increase in the Butterworth–van Dyke model resistance of quartz crystal resonator.  相似文献   

2.
Using cyclic voltammetry combined with an atomic absorption analysis, it is shown that, under anodic polarization of an FeSi single crystal in 0.5 M H2SO4, the metal-enriched (100) face dissolves faster. Fluoride-containing compounds promote anodic process due to dissolution of the surface layer of SiO2 and Si  相似文献   

3.
Anodic oxide films were fabricated on Ti–10V–2Fe–3Al alloy in acid (H2SO4/H3PO4) and neutral environmental friendly (C4H4O6Na2) electrolytes. The morphology, roughness, crystalline structure of the anodic oxide film were characterized by using scanning electron microscopy, atomic force microscopy, Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The results showed that the oxide film fabricated in H2SO4/H3PO4 electrolyte had a porous structure and the thickness of the film was 3.5 µm. The oxide film fabricated in C4H4O6Na2 electrolyte presented a nonporous structure that sustained the evident microstructure of the substrate, and the thickness of the film was 6.0 µm. The surface average roughness values of the two types of films were 245 nm and 166 nm, respectively. The phase of the anodic oxide films consisted mainly of anatase and rutile. EIS results showed that the film fabricated in C4H4O6Na2 electrolyte had higher impedance of the outer layer, while the film fabricated in H2SO4/H3PO4 electrolyte had higher impedance of the inner layer. Moreover, we attempt to explain the differences in the anodizing kinetics, structure and electrochemical impedance of anodic oxide films by the different films growth processes in the two types of electrolytes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The analytical properties of the cathodic peak of tin(II) reduction and the anodic peak of iron(II) oxidation on a graphite electrode were studied with the electrode surface mechanically renewed directly in a solution before applying a potential in each measurement. The influence of the organic components of the phenolsulfonic tin-plating electrolyte on the cathodic current of tin(II) reduction and anodic current of iron(II) oxidation was studied. A dc voltammetric method was proposed for determining tin(II) directly in the phenolsulfonic tin-plating electrolyte, and iron(II) after the electrolyte is diluted tenfold with a 0.5M H2SO4 supporting solution.  相似文献   

5.
The present study represents comparative analysis of voltammetric and microgravimetric behavior of active ruthenium (Ru), electrochemically passivated ruthenium (Ru/RuO2) and thermally formed RuO2 electrodes in the solutions of 0.5 M H2SO4 and 0.1 M KOH. It has been found that cycling the potential of active Ru electrode within E ranges 0 V–0.8 V and 0 V–1.2 V in 0.5 M H2SO4 and 0.1 M KOH solutions, respectively, leads to continuous electrode mass increase, while mass changes observed in alkaline medium are considerably smaller than those in acidic one. Microgravimetric response of active Ru electrode in 0.5 M H2SO4 within 0.2 V–0.8 V has revealed reversible character of anodic and cathodic processes. The experimentally found anodic mass gain and cathodic mass loss within 0.2–0.8 V make 2.2–2.7 g F?1, instead of 17 g F?1, which is the theoretically predicted value for Ru(OH)3 formation according to equation: Ru+3H2O?Ru(OH)3+3H++3e?. In the case of Ru/RuO2 electrode relatively small changes in mass have been found to accompany the anodic and cathodic processes within E range between 0.4 V and 1.2 V in the solution of 0.5 M H2SO4. Meanwhile cycling the potential of thermally formed RuO2 electrode under the same conditions has lead to continuous decrease in electrode mass, which has been attributed to irreversible dehydration of RuO2 layer. On the basis of microgravimetric and voltammetric study as well as the coulometric analysis of the results conclusions are presented regarding the nature of surface processes taking place on Ru and RuO2 electrodes.  相似文献   

6.
The kinetics of growth of porous anodic alumina films in pure H2SO4, in mixtures of H2SO4 and Al2(SO4)3 and in Al(HSO4)3, NaHSO4 and KHSO4 electrolytes were studied. The latent physicochemical processes at the pore base surface/electrolyte interface, across the barrier layer, inside the metal/oxide interface and at the pore wall surface/electrolyte interface and their mechanisms were revealed. High field strength equations were formulated describing the ionic migrations from the pore base surface. These showed that, at constant current density and temperature, the inverse of the pore base square diameter depends linearly on the inverse of the H+ activity in the anodizing solution and that this diameter increases with H+ activity, in agreement with the experimental results. The mechanism of electrolyte anion incorporation inside the barrier layer and the real distribution of the anion concentration across both the barrier layer and pore walls were deduced. The effects of the different kinds and concentrations of the electrolyte anions and cations on both the above processes and their mechanisms were also examined. Electronic Publication  相似文献   

7.

A PdAg deposit containing ~ 25 at.% Ag is obtained by the electrochemical codeposition from an aqueous solution of Pd and Ag sulfates (Au support, 0.5 M H2SO4). The deposit is characterized by means of various physical, physicochemical, and electrochemical methods. The PdAg deposit demonstrates the ~ 2 times higher specific activity (per the electrochemically active surface area (EASA) of Pd) in the formic acid oxidation reaction (FAOR) as compared with the individual Pd deposit prepared under the same conditions. The effect of silver additions on the palladium activity depends on many factors. The corrosion stability of PdAg is studied in 0.5 M H2SO4 solution based on the overall cyclic voltammograms (CVAs) and also on anodic and cathodic half-cycles in the region E = 0.3 − 1.25 V (vs. reversible hydrogen electrode (RHE)). The electrochemical estimates are compared with the results of direct analytical determination of dissolution products in solution after anodic polarization of deposits. The total amounts of Pd dissolved substantially increase with incorporation of Ag, which is associated, first of all, with the considerable increase in the EASA; at the same time, the specific dissolution of Pd also substantially increases. The possible factors determining the active dissolution of PdAg deposits are discussed; in particular, the specific mechanism of their dissolution via silver adatoms is proposed.

  相似文献   

8.
Nanostructured cobalt (Co) and cobalt-iron (CoFe) alloy coatings were electrodeposited from sulfate solutions in the presence and absence of saccharin. The effects of saccharin on the corrosion behavior of Co and CoFe alloy coatings were investigated using the electrochemical quartz crystal microbalance (EQCM) technique coupled with cyclic voltammetry (CV) measurements. Saccharin was added to the electrolyte as a grain refiner and brightener. Interestingly, opposite corrosion behaviors were found for all nanostructured coatings in 0.1 M H2SO4 and 0.1 M NaOH. The use of saccharin as an additive in the plating solution accelerated the anodic reaction for all deposits in acidic medium. The mass decreases while dissolution rate increased with higher saccharin concentration. Meanwhile, formation of a thick passive film on the Co electrode surface were enhanced while a hindering effect was observed for CoFe alloy coatings deposited in the presence of saccharin in alkaline solution. The anodic and cathodic curves obtained from potentiodynamic polarization experiments were also in agreement with the EQCM results.  相似文献   

9.
The dependence of the potentials and peak currents of the electrooxidation of isomeric dihydroxybenzenes on the polarization mode of a mechanically renewed nickel electrode is studied by direct-current cyclic voltammetry. The results indicate that the oxidation peaks of hydroquinone, pyrocatechol, and resorcinol appear in alkaline (0.05–0.10 M KOH), neutral (0.02–0.10 M Na2SO4) and acidic (0.02–0.05 M H2SO4) supporting electrolytes. The peak shape and parameters depend on the composition of the supporting electrolyte, which creates the conditions for the formation of different nickel oxides on the electrode surface then involved in the electrooxidation of dihydroxybenzenes. The regeneration of the electrode surface also affects the peak parameters, especially for resorcinol, whose signals completely disappear without the electrode renewal. The analytical signals for three isomeric dihydroxybenzenes are peaks in an alkaline solution, and also hydroquinone and pyrocatechol peaks in neutral and acidic solutions.  相似文献   

10.
The electrochemical behavior of PbO2/PbSO4 electrode is investigated in 4.5 M H2SO4 in presence of three surfactants, Sodium Dodecyl Sulfate (SDS), Cetyltrimethylammonium bromide (CTAB) and Sodium tripolyphosphate (STPP), using cyclic voltametry, electrochemical spectroscopy impedance and galvanostatic discharge as techniques. The micro morphology of the surface of the modified PbO2 electrodes is examined by scanning electron microscopy. The results show that SDS and CTAB when added in the electrolyte could refine the coating particles and change the roughness of the surface of the electrode leading to a thin film of PbO2 with amorphous character. In addition, SDS and CTAB shift the hydrogen evolution potential towards more negative values, improve the discharge capacity of the anodic layer and accelerate the charge transfer. Under cathodic polarization, CTAB presents the lowest value of the charge transfer resistance Rct. In the contrary, STPP shifts the oxygen evolution potential towards more positive values, passivates the surface of the electrode and inhibits completely the reaction of PbO2 formation.  相似文献   

11.
This paper reports on the effects of the K2SO4, H2SO4, NaCl, HCl, and tetrabutylammonium bromide concentrations (0.01–0.0002 M) and the presence of formic, acetic, and butyric acids in the electrolyte on the kinetic characteristics of oxygen reduction to H2O2 in a carbon black gas-diffusion electrode (GDE) and on the H2O2 accumulation kinetics in electrolyte at current densities of 30–100 mA/cm2. The introduction of K2SO4 and tetrabutylammonium bromide in the electrolyte led to an increase in the transfer coefficient α and a decrease in the coefficients in the Tafel equation. The concentration and the current efficiency of H2O2 decreased with the salt to acid concentration ratio. The organic acids reduced the current efficiency of H2O2 and increased the electrode polarization. Peracids with a current efficiency of up to 0.27% and concentration of up to 7.5 mM were obtained. Solutions of H2O2 with concentrations of 0.6–3.3 M and current efficiencies of 17–75% were obtained at current densities of 30–100 mA/cm2 in electrolytes with salt and inorganic acid concentrations of 0.9–40 g/l and in the presence of organic acids.  相似文献   

12.
Potentiodynamic electrochemical impedance spectroscopy provides extraction of potential-dependent space charge layer capacitance from potentiodynamic impedance spectra of non-stationary semiconductor–electrolyte interface. The new technique has been applied for acquisition of Mott-Schottky plots of cathodically treated TiO2 anodic films. Cathodic treatment in 1 M H2SO4 increases donor density and flat band potential of TiO2. Freshly doped films show hysteresis in the space charge layer capacitance in cyclic potential scans. The subsequent cycling eliminates the hysteresis but preserves the greater part of the doping effect. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, 13–16 March 2005  相似文献   

13.
The effect exerted by anodic treatment of electrodes with varied thickness, made of NT-1 low-conductivity carbonized material, in 0.07 M KOH and 0.25 M H2SO4 solutions on the distribution of the electrical conductivity across the electrode thickness at various anodic polarization conditions was studied.  相似文献   

14.
Overall kinetic and potentiometric studies of the growth of porous anodic alumina films in saturated H2SO4+Al2(SO4)3 electrolyte showed non-saturation conditions inside the pores and supersaturation conditions at the pore surface/electrolyte interface where the field and the solid surface catalyse the formation of colloidal Al2(SO4)3 micelles. Suitable high-strength field thermodynamically sustained electrochemical and chemical kinetic equations were formulated. It was shown that the diameter and surface fraction of charge exchange at the pore bases, the real pore wall surface fraction where oxide dissolution occurs, and its rate are strongly affected by the conditions. The mechanism of growth and structure of the films are quite different from those in H2SO4. A mechanism of regular film growth is imposed and the critical current density, above which pitting appears, strongly increases. The formulated theory may predict improved or new Al anodizing technologies. Electronic Publication  相似文献   

15.
The effect exerted by electrochemical oxidative modification of carbon nanofibers and nanotubes by anodic and successive cathodic and anodic polarization in aqueous solutions of electrolytes H2SO4, CH3COONH4, HNO3, (NH4)2SO4, [H2SO4 + (NH4)2SO4] on the structure and morphology of the fibers constituting the nanomaterials, on the composition of surface groups, on the stationary electrode potential of carbon nanofibers, and on properties of epoxy–carbon composites was studied. The results of the electrochemical modification were compared to the results of chemical modification of carbon nanofibers in a 6.0 M HNO3 solution and of carbon nanotubes in a mixture of concentrated acids H2SO4 + HNO3.  相似文献   

16.
Zusammenfassung Eine Platinelektrode wurde bei 3 V vs. SHE in 0,5 M H2SO4 und bei 3 V vs. Ag/AgCl-Bezugselektrode in 1 M NaOH anodisch polarisiert und die entstandenen oxidischen Deckschichten spektroskopisch analysiert. Mittels Röntgen-Photoelektronen- und Elektronenenergieverlust-Spektroskopie konnten die Passivschichten nach Transfer der Elektrode aus der elektrochemischen Zelle in ein Ultrahochvakuumsystem als Pt(OH)4 (saurer Elektrolyt) und PtO(OH)2 (alkalischer Elektrolyt) charakterisiert werden. Auch bei niedrigeren Potentialen scheint in H2SO4 Hydroxid als Oberflächenspezies vorzuliegen. Diese Untersuchungen stehen in Einklang mit voltammetrischen In-situ-Messungen.
Characterization of anodic coatings on platinum electrodes by X-ray photoelectron spectroscopy
Summary A platinum electrode was anodically polarized at 3 V vs. SHE in 0.5 M H2SO4 and in 1 M NaOH at 3 V vs. Ag/AgCl reference electrode and the oxidic coatings formed were spectroscopically analyzed. The passive layers could be characterized by X-ray photoelectron and electron energy loss spectroscopy after transferring the electrode from the electrochemical cell into a UHV system. The coatings were found to consist of Pt(OH)4 (acid electrolyte) and PtO(OH)2 (alkaline electrolyte). Hydroxide seems also to be the predominant surface species at lower potentials in H2SO4. These investigations are in agreement with voltammetric in situ measurements.
  相似文献   

17.
Proton exchange membrane water electrolysers are very promising renewable energy conversion devices that produce hydrogen from sustainable feedstocks. These devices are mainly limited by the sluggish kinetics of the oxygen evolution reaction (OER). Ir-based nanoparticles are both reasonably active and stable for the OER in acidic media. The electrolyte composition and the pH may play a crucial role in electrocatalysis, yet they have been widely overlooked for the OER. Herein, we present a study on the effects of the composition and concentration of the electrolyte on commercial Ir black nanoparticles using concentrations of 0.05 M, 0.1 M and 0.5 M of both sulphuric and perchloric acid. The results show an important effect of the electrolyte composition on the catalytic performance of the Ir nanoparticles. The concentration of H2SO4 interferes on the oxidation of Ir and decreases the catalytic performance of the catalyst. HClO4 does not show strong interferences in the electrochemistry of Ir. Higher catalytic performances are observed in HClO4 electrolytes in comparison to H2SO4 with little effect of the concentration of HClO4.  相似文献   

18.
Transients of the open-circuit potential observed in the reaction of methanol with oxygen (Oads) preliminarily adsorbed on smooth polycrystalline platinum (pcPt) are measured in 0.05 M HClO4, 0.5 M HClO4, 0.05 M H2SO4, 0.05 M H2SO4 + 0.45 M Na2SO4, and 0.05 M H2SO4 + 0.45 M Cs2SO4. It is shown that the solution pH has a weak effect on the transient characteristics (when the reversible hydrogen electrode potential scale is used). This confirms the chemical nature of rate-controlling stages in the reaction mechanism. The changes in the reaction rate, observed upon going from one electrolyte to another, are preferentially associated with the involvement of solution ions in the formation of activated surface complexes that include CH3OH, Oads, and supporting-electrolyte components.  相似文献   

19.
Anodic oxidation of an AZ91D magnesium alloy was carried out in an attempt to increase the corrosion resistance. The alloy was placed in an electrolyte containing 0.1 M sodium silicate (Na2SiO3), 2.0 M sodium hydroxide (NaOH) and 0.1 M sodium phosphate (Na3PO4), and treated with a current density of 100–400 mA/cm2 for 1 to 4 min. After the anodic oxidation treatment, the surface characteristics were analyzed by SEM, X‐ray diffraction (XRD) and a surface roughness tester. The corrosion resistance was determined by measuring the corrosion potential and corrosion current density using potentiodynamic polarization in a 3.5 wt% NaCl electrolyte solution. Although the anodic oxidation treatment with the base electrolyte resulted in an arrival voltage ranging from 60 to 70 V, the addition of silicate tended to reduce this arrival voltage by approximately 10–20 V and decrease the critical voltage required for the formation of a porous oxide film. The pore size and film thickness increased with increasing applied current and treatment time. The addition of silicate to the electrolyte resulted in films with a homogeneous pore size and a film thickness increasing with the increasing applied current and treatment time. XRD showed the formation of a new MgO and Mg2SiO4 phase. The formation of Mg2SiO4 was attributed to the presence of SiO44? in the film. After the addition of silicate, the corrosion potential increased and corrosion current decreased, resulting in improved corrosion resistance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
《Analytical letters》2012,45(10):1089-1094
Abstract

Studies of the background currents for polythioxyl electrodes in 1 N H2SO4 supporting electrolyte shows that oxygen strongly chemisorbs on both parallel and perpendicular surfaces. On fresh surfaces the principle product on anodic breakdown is oxygen but on prolonged cycling surface hydroxides of (SN)x are the major surface functional groups at anodic breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号