首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic sorbents are often used in separation of metals and radionuclides in radioanalytical application and they were also used in technological scale for separation of radionuclides in cleanup of Three Mile Island NPP. Inorganic sorbents become popular in the last years because no problem with organic contamination, there are stable against radiation, sorption efficiency can be tailor made for selective separation of chosen metal. Contrary to the organic sorbents they have usually lower capacity and chemical stability is limited to narrower pH. Nevertheless of some problems, many good properties of inorganic sorbents make them very attractive for sorption study.  相似文献   

2.
Physicochemical properties of nanoporous modified carbon sorbents and sorption of cadmium ions (0.1–20 mg L?1) onto them from nitrate solutions at pH 5–7 were studied. The acid-base nature of functional oxygen-containing groups on the carbon surface of the sorbents was determined. The ability to sorb cadmium ions depends on the kind of chemical modification of the sorbent surface.  相似文献   

3.
Journal of Radioanalytical and Nuclear Chemistry - The sorption of inorganic radiocarbon on goethite, hematite and magnetite was studied as a function of carbon concentration, pH and ionic...  相似文献   

4.
Two akaganeite materials were tested for the removal of antimonate, trimethyl antimonate, arsenate, arsenite, and dimethyl arsenate from water: a commercial product (GEH) and a synthesized akaganeite. The two materials show similar q(max) values, but differ in their K(L) values. This could be a result of their different crystal sizes indicated by sharper XRD reflections of the synthesized akaganeite compared with GEH. Batch experiments were carried out using all species to investigate the influence of the pH on their sorption onto the commercial material. The best results for the removal of antimonate and arsenate were achieved under acidic conditions, while the sorption of arsenite has an optimum at pH 7. The maximum loadings vary from 450 mg g(-1) (antimonate at pH 2.2.) to 2 mg g(-1) (trimethyl antimonate at pH 7). Competition reactions (up to a 10-fold excess of the competitor ion) were studied with antimonate, arsenate, and phosphate. The sorption capacity of arsenate decreases up to 12.5% by adding phosphate (ratio 1:10), but the addition of antimonate did not influence the sorption of arsenate. Conversely, the sorption of antimonate decreases due to the addition of 10-fold concentration of arsenate (31%) or phosphate (27%).  相似文献   

5.
It is important to apply sorbent materials for purification of water from arsenic contamination due to serious arsenic pollution worldwide. We have developed new sorbents based on natural materials that provide a cheap and environmentally friendly alternative. For the first time, peat modified with iron compounds and iron humates were tested for sorption of arsenic compounds. The highest sorption capacity was found in peat modified with iron compounds. We have found that sorption of different arsenic speciation forms was strongly dependent on solution pH, reaction time and temperature. Calculations of the sorption process using thermodynamic parameters indicate the spontaneity of sorption process and its endothermic nature. Sorption kinetics showed that most arsenates are removed within 2 hours, and the kinetics of arsenate sorption on modified peat can be described by the pseudo-second order mechanism.   相似文献   

6.
Sorption of copper ions by cellulose sorbents: pinewood sawdust and cotton and flax fibers, both untreated and chemically modified with a polyfunctional compound, followed by fixation with polyvinylpyrrolidone, was studied.  相似文献   

7.
Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. Received: 18 March 1998 / Revised: 25 May 1998 / Accepted: 30 May 1998  相似文献   

8.
Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. Received: 18 March 1998 / Revised: 25 May 1998 / Accepted: 30 May 1998  相似文献   

9.
Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.  相似文献   

10.
This paper reviews the use of arsenic compounds in semiconductor manufacture and emphasizes the role of alkylated arsenic compounds.  相似文献   

11.
In this study, the sorption behavior of two important contaminants, phenol and radioactive cesium (137Cs), onto surfactant modified insolubilized humic acid (SMIA) were investigated as a function of time, sorbate concentration utilizing the radiotracer method and UV–Vis spectroscopy. Phenol sorption process was well described by both Freundlich and Tempkin type isotherms, and cesium sorption was described by Freundlich and Dubinin–Radushkevich isotherms. It was found that SMIA adsorbs both cations and phenolic substances. Kinetic studies indicated that adsorption behavior of phenol obey the pseudo second order rate law. FTIR spectroscopic technique was used to understand the structural changes during modification process with surfactants.  相似文献   

12.
13.
The transport of aromatic carboxylate compounds in the environment can be strongly influenced by adsorption onto certain minerals, such as iron oxides and hydroxides, found in ground water and soils. Batch experiments with five iron oxides were conducted to quantify the contributions to adsorption from different iron mineral surfaces and compare adsorption characteristics of selected organic acids (gentisic acid (GA) and 1-hydroxy-2-naphthoic acid (HNA)). Because of their widespread abundance in soils and sediments, goethite, lepidocrocite, ferrihydrite, hematite, and magnetite were investigated. Sorption of two organic acids onto iron oxides was examined over a wide range of conditions (pH, ionic strength, and sorbate concentration). Specific surface area and mineral surface charge proved be important for the adsorption of these compounds. The sorption isotherm was described well by the Tempkin equation for both organic acids, with the adsorption constant higher for HNA than GA. For modeling the sorption edges of ferrihydrite and hematite, surface reactions involving the formation of mononuclear (1:1) surface species were proposed. These results indicate that the generalized two-layer model, with the assumption of homogeneous surface sites, could predict sorption on iron oxides over a range of pH conditions. The results of this study suggest that the mineralogy of the iron oxides and the pH value should be considered when predicting sorption of aromatic acids onto iron oxides and their fate in the soil and the environment.  相似文献   

14.
Comparative analysis of the sorption and kinetic properties was carried out for organomineral sorbents synthesized by two routes: (1) from an organomineral suspension and (2) from aqueous-organic solutions.  相似文献   

15.
16.
王京平 《高分子科学》2010,28(2):241-248
<正>Two hypercrosslinked polymeric adsorbents(ZH-01 and Amberlite XAD-4 resin) were employed to remove three kinds of phenolic compounds including phenol,4-nitrophenol and 2,4-dinitrophenol from aqueous solutions.The study was focused on the static equilibrium adsorption behavior,the column dynamic adsorption and desorption profiles.The Freundlich model gave a perfect fitting to the isotherm data.The adsorbing capacities for these three compounds on ZH-01 were higher than those on Amberlite XAD-4 within the temperature range 288-318 K,which was attributed to the large micropore area and 2-carboxybenzoyl functional groups on the network of ZH-01 resin.The adsorption for phenol and 4- nitrophenol on ZH-01 was a physical adsorption process,while for 2,4-dinitrophenol it was a coexistence process of physical adsorption and chemisorption's transitions.The column test showed the advantages of ZH-01 in the dynamic adsorption processes of phenolic compounds.Being used as the desorption reagent,sodium hydroxide solution showed an excellent performance.  相似文献   

17.
The sorption and desorption of phenanthrene by three engineered nanoparticles including nanosize zerovalent iron (NZVI), copper (NZVC), and silicon dioxide (NSiO2) were investigated. The sorption of phenanthrene onto NSiO2 was linear and reversible due to the hydrophilic properties of NSiO2. In comparison, sorption of phenanthrene onto NZVI and NZVC was nonlinear and irreversible, which was potentially due to the existence of significantly heterogeneous surface energy distribution patterns detected by a standard molecular probe technique. Naphthalene exerted significant competitive sorption with phenanthrene for NZVI and NZVC, and the isotherm of phenanthrene changed from being significantly nonlinear to nearly linear when naphthalene was simultaneously absorbed. A surface adsorption mechanism was proposed to explain the observed sorption and competition of phenanthrene on both NZVI and NZVC. In contrast, no competition was observed for sorption onto NSiO2. The sorption of phenanthrene on all three nanoparticles significantly decreased with increasing pH. The sorption irreversibility of phenanthrene on NZVI and NZVC were significantly enhanced with decreasing pH. A pH-dependent hydrophobic effect and dipole interactions between the charged surface (electron acceptors) and phenanthrene with electron-rich pi systems (electron donors) were proposed to explain the observed pH-dependent sorption.  相似文献   

18.
The sorption properties of three titanosilicate materials, AM-4, ETS-4, and Na2Ti2O3SiO4 . 2H2O of different framework structure and cation exchange capacity were studied towards the uptake of uranium from aqueous systems. Selectivity factors were estimated by determining batch distribution coefficient (Kd) and uranium removal (mg) per gram of the exchanger as a function of contact time, uranium concentration and batch factor (solution volume to exchanger mass ratio). The difference in their ability to take up uranium was discussed by in terms of their framework structure and the determination of their cation exchange capacity. Comparisons to ETS-10 have been made.  相似文献   

19.
The kinetics of sorption of vapor over aqueous and aqueous-alcoholic solutions of potassium iodide and potassium iodine–iodide and over crystalline iodine onto chitosan powder or film was studied. The vapor diffusion coefficients in the initial and final sorption steps were calculated from the data obtained. For all the chitosan–sorbate vapor systems studied, the mass transfer relationships are not described by Fick’s law and are characterized by anomalous sorption kinetics. The properties of chitosan powder after the uptake of the sorbate vapor were evaluated by electronic and IR spectroscopy, X-ray diffraction, and differential thermal and thermal gravimetric analysis. Sorption of iodine-containing vapor onto the polymer is accompanied by complexation of the components. The iodine–chitosan complexes are stable in storage and resistant to heat treatment. The results obtained served as a basis for developing a procedure for preparing kinetically and thermally stable powdered iodinated chitosan derivatives.  相似文献   

20.

The sorption process of Co(II) onto nanoparticles of calcium silicate doped with 5% CuO treated by humic acid was evaluated using batch technique. This process follows the second order kinetic model. Equilibrium isotherm models of Co(II) sorption onto the modified composite was 208.91 mg/g. Negative value of free energy change (ΔG0), confirms the spontaneous sorption of Co(II) ions onto the modified composite. The removal efficiency (R%) reached 96.9% using 0.5 g of the modified composite. Therefore, the composite could be used for treatment of radioactive waste containing 60Co.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号