首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) has been incorporated into polycarbonate (PC) composites in order to study its effect on mechanical and thermal properties and flame retardancy. The mechanical and thermal properties of the DOPO-POSS/PC composites have been investigated by tensile and flexural testing, DSC, and DMA. Slight enhancements of yield stress, and flexural strength and modulus, and obvious decreases of fracture strength and strain of the DOPO-POSS/PC composites were observed with an increase in DOPO-POSS loading. The glass transition temperatures (Tg) of the composites were reduced with increasing DOPO-POSS loading. The morphology of the PC composites was evaluated by SEM, which indicated that the DOPO-POSS was dispersed with a particle size of 100-250 nm in the PC matrix. The thermal degradation behaviour and flame retardancies of PC composites with different DOPO-POSS loadings were investigated by TGA, LOI, UL-94 standard, and cone calorimetry. The composite had an LOI value of 30.5 and a UL-94 rating V-0 when the content of DOPO-POSS was 4%.  相似文献   

2.
Polycarbonate (PC) composites with low weight have been required for mobile applications. Herein, the incorporation of 15 phr (parts per hundred of resin) soda-lime borosilicate hollow glass microspheres (HGMs) into a PC matrix reduced the specific gravity by 15.2%. The microsphere preservation rate was systematically examined depending on HGM compressive strength, and processing conditions for extrusion (side-feeding vs. main-feeding vs. screw configuration) and injection molding (mild condition for edge gate vs. extreme condition for pinpoint gate). Various transition temperatures such as glass transition temperatures and heat distortion temperature were investigated as a function of HGM. The coefficient of thermal expansion of the 15 phr HGM-embedded PC composites was reduced by 51.9%. The rheological behavior of the composites was also probed. The toughness was reduced due to the ductile-to-brittle transition of PC caused by the incorporation of fillers despite the enhanced modulus. The incorporation of the robust hollow glass microspheres into a PC composite via a delicately designed screw configuration and suitable processing conditions can be used for low-density composites such as mobile applications.  相似文献   

3.
PC/尼龙6共混合金的结晶结构与性能   总被引:11,自引:1,他引:10  
聚碳酸酯(PC)由于具有突出的冲击韧性、良好的透明性、尺寸稳定性和电气绝缘性而广泛应用于电子电气、仪器仪表、汽车、机械、医疗、照明和建筑等领域,是一种综合性能优良的工程塑料.但也存在着加工流动性差和耐药性差、易应力开裂及对缺口敏感等缺陷,且价格昂贵,因而限制了它的应用范围.对PC进行合金化,提高PC的性能,降低成本是PC改性的重要研究方向,开发成功的PC合金有PC/ABS,PC/PET,PC/PBT[1]和PC/PE[2]等.制备高性能PC/尼龙6(PA6)合金是目前国内外PC改性的热点.PA6的加入可以改善PC的耐药性、耐应力开裂性及加工性能,降…  相似文献   

4.
The composites containing polycarbonate (PC) and cerium oxide (CeO2) nanoparticles as well as nanoparticles modified with stearic acid (mCeO2) have been prepared using a melt blending method. The composites are studied by using FTIR spectroscopy, differential scanning calorimetry, thermal gravimetric analysis and scanning electron microscopy, and their tensile strength and ultraviolet (UV) resistance are examined. The results indicate that the introduction of CeO2 nanoparticles at 1 wt% can improve the mechanical properties of PC, while a weight ratio that is over 1 wt% can lead to a reduction in the tensile strength. Compared with the PC/CeO2 composites, the PC/mCeO2 composites provide better mechanical properties. Besides, the introduction of CeO2 nanoparticles gives PC promising UV resistance. However, different amounts of CeO2 nanoparticles used provide similar thermal and UV resistance in PC. In a comparison of the PC/CeO2 and PC/mCeO2 composites, there are no apparent differences observed between CeO2 and mCeO2 on improving the UV resistance of PC.  相似文献   

5.
Poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), Nylon 6, and Nylon 6,6 have been electrospun successfully. The nanofibers have been characterized by scanning electron microscopy (SEM), confirming the presence of bead free and fiber‐bead free morphologies. Thermogravimetric analysis (TGA) indicated differences between the thermal stability of PMMA nanofibers and PMMA powder. However, no significant differences were observed between the starting physical form (powder or pellet) of PVC, Nylon 6 and Nylon 6,6, and their corresponding electrospun nanofibers. Differential scanning calorimetry (DSC) demonstrated a lower glass transition temperature (Tg) and water absorption for PMMA electrospun nanofibers. Furthermore, electrospun Nylon 6 and Nylon 6,6 had a slight decrease in crystallinity. Tensile testing was performed on the electrospun nanofibers to obtain the Young modulus, peak stress, strain at break, and energy to break, revealing that the non‐woven mats obtained had modest mechanical properties that need to be enhanced. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.  相似文献   

8.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane and diphenylsilanediol through solution polycondensation and it was added to polycarbonate (PC). The structure and thermal properties of PSiN were characterized by fourier transform infrared spectroscopy and thermogravimetric analysis (TG) tests. The effect of PSiN on the flame retardancy and thermal behaviors of PC was investigated by limited oxygen index (LOI), vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and the thermal stability of PC are improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% diphenylsulfone sulfonate (KSS) are incorporated, the LOI value of PC is found to be 46, and class V-0 of UL-94 test is passed. The char structure observed by scanning electron microscopy indicated that the surface of the char for PC/KSS/PSiN system holds a firmer and denser char structure when compared with neat PC and PC/KSS system.  相似文献   

9.
Summary: Polycarbonate Acrylonitrile-Butadiene-Styrene blends (PC/ABS) with flame retardants Triphenyl Phosphate (TPP), nanoclay and their mixtures were prepared in a twin- screw extruder. The morphological properties were characterized by X-ray diffractometry (XRD) which showed the intercalated structure of nanoclay in the matrix. Thermal stability of the samples was studied using Thermogravimetric Analysis (TGA), and the degradation kinetic parameters were determined using various methods including Kissinger, Flynn-Wall-Ozawa and Coats-Redfern methods. It was found that the sample containing both TPP and nanoclay has the highest activation energy. The activation energy order of PC/ABS blends with different flame retardant packages, obtained by Kissinger method agrees well with that obtained by Coats-Redfern. Cone calorimetry and limited oxygen index (LOI)/underwriters laboratory 94 (UL94) methods were used to investigate the fire behaviour and flammability of materials. The reduced mass loss rate (MLR), peak heat release rate (PHRR) and enhanced LOI of the composite containing mixture system confirmed a synergistic effect of TPP and nanoclay.  相似文献   

10.
The flame retardancy of bisphenol A polycarbonate (PC) containing potassium diphenylsulfone sulfonate (KSS), poly(aminopropyl/phenylsilsesquioxane) (PAPSQ) and poly(vinylidenefluoride) (PVDF) was measured by limited oxygen index (LOI) and examined according to UL94. A high LOI and UL94 V-0 rating for 1.6 mm thickness samples were obtained by a combined use of equivalent KSS, PAPSQ and PVDF at 0.1-0.3 wt% loading, respectively. The improvement in flame retardancy of PC compositions arose from the synergistic interaction of three additives. Thermogravimetric analysis (TGA) indicated that the combination decreased the activation energy (E) of PC degradation and elevated the thermal degradation rate of PC to ensure the formation of an insulating carbon layer. FTIR analysis showed that the LOI char of PC containing the three additives took on a highly cross-linking aromatic ester and ether structure.  相似文献   

11.
Electrical resistance (ER) and thermogram measurements were used to evaluate thermal transfer, interfacial and mechanical properties of carbon fiber reinforced thermoplastic polycarbonate composites. Carbon nanotubes (CNTs) were fairly uniformly dispersed in polycarbonates using a solvent dispersion method. The CNTs were then further dispersed with an additional time using a twin screw extruder. The effect of CNT on the mechanical properties of polycarbonate was evaluated using a thin film tensile test. For thermogram to evaluate the transferring temperature the composite was placed on a hotplate and copper wires were inserted in the composite at uniform thickness intervals. Due to the different inherent thermal conductivity of CNT, ER was measured to detect thermal changes in the carbon fiber/CNT-polycarbonate composites. The comparison of interlaminar shear strength (ILSS) was to investigate effects of CNT on mechanical and interfacial properties. The uniform distribution of CNTs affected all of these properties in carbon fiber-reinforced thermoplastic composite. Furthermore, heat transfer and heat release become more rapid with the addition of CNT than the without case.  相似文献   

12.
The present work aims to modify conventional low density polyethylene (LDPE) by preparing its particulate composite with cenosphere. Cenosphere is a potential waste produced in bulk from the coal fired thermal power plant. In this context, surface modification of cenosphere was done by γ- aminopropyl triethoxy silane (ATS) coupling agent. Furthermore, LDPE was grafted by glycidyl methacrylate (GMA) to be used as compatibilizer. The resulting surface modified and unmodified cenosphere as well as glycidyl methacrylate grafted LDPE (LDPE-g-GMA) were functionally characterized by Fourier Transform Infrared (FT-IR) spectroscopy. LDPE-cenosphere particulate composites were processed in their different formulations and evaluated with various properties such as thermal stability, mechanical properties, chemical resistance and flow behaviour. Dispersibility of cenosphere in LDPE matrix was studied by Scanning Electron Microscopy (SEM). Series of analysis was performed in order to understand the effect of cenosphere content and its modification on the final properties of particulate composites. Mechanical properties were found to be statistically significant as per ANOVA and Post hoc Tukey HSD test. Particulate composites prepared with modified interphase were observed to possess good combination of properties.  相似文献   

13.
蔡绪福 《高分子科学》2013,31(10):1352-1358
A novel flame retardant (DAPSiO), containing silicon and nitrogen, was synthesized by using dichlorodiphenylsilane, γ-chloropropyl methyl dimethoxysilane and 1,2-ethanediamine. DAPSiO was used together with potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) to prepare a flame-retardant system for polycarbonate (PC). The structure of DAPSiO was characterized by Fourier transform infrared spectroscopy (FTIR), and 1H-NMR tests. Flammability and thermal behaviors of PC/KSS/DAPSiO systems were estimated by limited oxygen index (LOI), vertical burning test (UL-94) and thermogravimetric analysis (TGA) tests. The results showed that the flame retardancy and thermal stability of PC/KSS system were improved with the addition of DAPSiO. When 1 wt% DAPSiO and 0.5 wt% KSS were incorporated, the LOI value of PC was found to be 44, and class V-0 of UL-94 test was passed. The scanning electron microscopy (SEM) and FTIR indicated that PC/KSS/DAPSiO system held a more cohesive and denser char structure when compared with pure PC and PC/KSS system.  相似文献   

14.
This article reports on the morphology, interfacial interaction, thermal stability, and thermal degradation kinetics of polycarbonate (PC)/mesoporous silica (MCM-41) composites with various MCM-41 contents, prepared by melt compounding. The composites with low filler loadings (<0.3?wt%) maintained their transparency because of the well dispersed MCM-41 particles, but at higher filler loadings the composites lost their transparency due to the presence of agglomerates. The presence of agglomerates decreased the thermal stability of PC due to the reduced effectiveness of the particles to immobilize the polymer chains, free radicals, and volatile degradation products.  相似文献   

15.
Study on thermal degradation and combustion behaviors of PC/POSS hybrids   总被引:2,自引:0,他引:2  
Polycarbonate/polyhedral oligomeric silsesquioxane hybrids were prepared based on bisphenol A polycarbonate (PC) and trisilanolphenyl-POSS (TPOSS) by the melt blending method. Investigation of transmission electronic microscopy and Fourier transform infrared spectroscopy confirms that the nanoscale TPOSS particles were well dispersed in the PC matrix and there is no chemical reaction between the TPOSS particles and PC matrix during the melt blending. The thermal degradation behaviors of the PC/TPOSS hybrids were investigated. The presence of TPOSS significantly affects the thermal degradation process of PC. The combustion behaviors of the hybrids were evaluated by cone calorimetry experiments. The addition of TPOSS significantly decreased the value of peak heat release rate of the hybrids. Moreover, the addition of TPOSS at 2 wt% leads to the maximum decrease of the PHRR. And scanning electron microscopy and X-ray photoelectron spectroscopy were used to explore the char residues of the pure PC and the hybrids.  相似文献   

16.
Two multi‐walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin‐screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ~100. Transmission electron microscopy results suggest that melt‐mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt‐mixing. Molecular weight measurements show that during melt‐mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ~100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 73–83  相似文献   

17.
Surface treated fillers are added to an immiscible blend to study their effect on the melt behavior. The system studied is polycarbonate (PC)polypropylene (PP)/glass beads. Glass beads with no treatment, treated with an aminosilane and treated with a fluorosilane coupling agent are used. Differences in morphology are correlated with results from dynamic mechanical analysis. An increase in the viscosity of the blends filled with the amino-silane agent, their response to different frequencies, and their activation energies for flow are related to a tendency toward compatibilization. Construction of master curves of viscosity data shows some potential as a compatibility criterion for these systems.  相似文献   

18.
Nanoscale MolecularDiamond products (various diamondoid materials), obtained from petrochemical feedstocks, have been investigated as additives for polypropylene and polycarbonate. Three of the homologues of this family (diamantane, triamantane, and the [121]tetramantane isomer) have marginal effects on the thermal and mechanical properties of nonpolar/semicrystalline polypropylene. Mixtures of methylated tetramantane nanofillers also increase the stress–strain behavior of polypropylene composites without significantly impacting their glass transition temperatures. The addition of the selected diamondoids to amorphous/moderately polar polycarbonate increases the polymer tensile modulus significantly with marginal increases in the yield stress. The effects of the selected diamondoids on the thermal stability, crystallinity, and optical properties of polypropylene and polycarbonate are also reported. The results for the mechanical properties show that the selected diamondoids behave as plasticizers in polypropylene, whereas in polycarbonate, they act as antiplasticizers without adversely affecting the optical clarity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1077–1089, 2007  相似文献   

19.
The objective of his work is to show that pineapple leaf fiber (PALF) can be used successfully to reinforce a high melting polymer such as nylon. One of the most important barriers to the utilization of lignocellulosic materials in polymer matrix composites is their limited temperature resistance. As a consequence, they are mostly used to reinforce low melting temperature polymers such as polyethylene and polypropylene as well as polystyrene. However, this work reveals that PALF can be used to reinforce nylon. This is because of its very low lignin content. Nylon 6/66 composites containing a fixed amount of 20 wt % PALF in the form of short and fine fibers were prepared with a laboratory twin screw extruder and then injection molded. The mechanical properties of three types of PALF, i.e. untreated, alkaline- and silane-treated, were studied. Significant improvements in modulus and heat distortion temperature were obtained. The crystalline structure and orientation in the injected composites were investigated with synchrotron wide angle x-ray scattering (WAXS). It was found that both PALF and nylon crystallites oriented well along the flow direction and this is the key factor for the improvements observed.  相似文献   

20.
增韧;反应性聚碳酸酯/环氧树脂体系的玻璃化转变行为及力学性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号