首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The Zn-Ni+Ni coatings were deposited under galvanostatic conditions at the current density range from 20 to 60 mA cm?2. The influence of deposition current density on surface morphology, chemical and phase composition and corrosion resistance of obtained coatings, was investigated. Structural investigations were conducted by X-ray diffraction method. Surface morphology and surface chemical composition of the obtained coatings were determined by a scanning electron microscope. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl solution, using potentiodynamic and Scanning Kelvin Probe (SKP) methods. A possibility of incorporation of nickel powder from a suspension bath to the Zn-Ni matrix, during galvanostatic deposition was demonstrated. The results of chemical composition analysis show that the Zn-Ni + Ni coatings contain approximately 15?C18% at Ni. It was found that surface morphology, surface chemical and phase composition of Zn-Ni + Ni coatings depend in small degree on deposition current density. However, the current density influences distribution of nickel powder on the surface of these coatings. The optimal values of current density on account of corrosion resistance, are found to be j = 40?C50 mA cm?2.  相似文献   

2.
LY12铝合金表面稀土转化膜腐蚀行为的研究   总被引:15,自引:3,他引:12  
通过金相观察和X射线射能谱分析研究了LY12铝合金表面两种稀土转化膜的腐蚀行为,在NaCl溶液中稀土转化膜的腐蚀以点腐蚀开始,点蚀处基体含Cu量高。根据Mansfeld点腐蚀模型等效电路提出了利用电化学阻抗谱研究稀土转化膜在NaCl溶液中腐蚀程度的新方法,转化膜在NaCl淀粉 中浸泡时间较短、腐蚀不太严重的情况下,等效电路中的Warburg阻抗W可以忽略,简化等效电路得出了计算转化膜表面点腐蚀百分  相似文献   

3.
Nickel-based coatings are potential candidates for the protection of electrochemical dissolution of steel surfaces. Such coatings, elaborated by magnetron sputtering in a nitrogen atmosphere, offer good corrosion protection, good adherence as well as stability for metallic structures. NiCr alloys with almost constant composition have been deposited with different nitrogen contents on stainless steel and carbon steel surfaces. The coating uniformity, homogeneity, composition and crystallinity have been studied by scanning electron microscopy, energy-dispersive X-ray spectrometry, atomic force microscopy and X-ray diffraction techniques. The corrosion degradation behavior of all the samples was tested in NaCl and NaCl and CO2 mixture exposures using electrochemical impedance spectroscopy measurements. Nitrided NiCr alloys on a stainless steel substrate resulted with better adhesion than carbon steel, by delaying the corrosion mechanism when exposed to NaCl and CO2 solution. A comparison of the corrosion resistive behavior of the substrates (stainless steel, carbon steel) and the coatings is made by using the electrical capacitance concept from a double-layer model for the coating–metal interface.  相似文献   

4.
WBE联合EIS技术研究缺陷涂层下金属腐蚀   总被引:2,自引:0,他引:2  
张伟  王佳  李玉楠  王伟 《物理化学学报》2010,26(11):2941-2950
用电化学阻抗谱(EIS)结合丝束电极(WBE)技术研究了缺陷涂层浸泡在3.5%(质量分数)NaCl溶液中的劣化过程.从浸泡开始到完好涂层鼓泡失效,缺陷涂层丝束电极阻抗响应一直是缺陷区电极腐蚀反应过程特征,而完好涂层的劣化过程和涂层下的腐蚀反应过程特征被"平均掉".根据电极表面的电流分布,结合阻抗谱技术实现了对表面任意局部阴极和阳极区阻抗测试.研究发现,浸泡开始时,缺陷涂层阴极电流和阳极电流均出现在缺陷区,随着腐蚀过程的发展,阳极电流仍然保持在缺陷区,但阴极电流逐渐向完好涂层下扩展.根据实验结果,对缺陷处和涂层下金属腐蚀反应发生发展的机理进行了深入讨论.  相似文献   

5.
A chrome‐free conversion coating treatment for magnesium by phytic acid solution was developed. The immersion experiments were used for evaluating the effects of the processing parameters (such as conversion temperature and time, concentration and pH value of phytic acid solution) on the corrosion resistance of the phytic acid conversion coating. The morphologies and compositions of the coatings were determined by SEM and EDS respectively. The experimental results indicated that the corrosion resistance of the conversion coating formed in the solution containing 0.5% phytic acid at 25°C and pH=4 for 30 min was higher than that of natural oxide, and the conversion coating formed on the surface of magnesium was of multilayer mainly consisting of Mg, C, O and P. The thicknesses of the conversion coatings were approximately 1.0–15 µm and the conversion coatings presented obvious network‐like cracks. The electrochemical potentiodynamic polarization experiment indicated that the free corrosion potential of the magnesium with phytic acid conversion coating was increased, and its corrosion current and corrosion rate declined in 3.5% NaCl solution. Phytic acid conversion coating could improve the electrochemical property of magnesium and provide effective protection, which can improve the corrosion resistance of magnesium.  相似文献   

6.
Electroless Zn–Ni–P thin films were deposited on low carbon steel from an alkaline non‐cyanide aqueous electrolyte. The newly developed ternary alloys structure and microstructure investigations were carried out via X‐ray diffraction and SEM. Chemical composition of the coatings was investigated via energy dispersive spectroscopy. Polarization tests were used to study the corrosion properties of the coatings in a 3.5 wt.% NaCl solution. The results confirmed the high corrosion resistance of Zn–Ni–P alloy plated steel sheet. The surface analysis of the thin film samples before and after corrosion was performed by XPS. The incorporation of Zn in Ni–P thin film is proven for all initial samples to be as a mixture of zinc and zinc oxide, while nickel exists in +2 and +3 oxidized states. A passive film of a mixture of oxide and hydroxide of zinc and nickel forms on the surface and prevents the Zn–Ni–P thin films from corrosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
TiO_2/316L不锈钢薄膜电极在NaCl溶液中的耐腐蚀性能   总被引:8,自引:0,他引:8  
应用sol gel法和提拉技术于 316L不锈钢表面构筑纳米TiO2薄膜,再经水热后处理以消除膜中的细小龟裂.SEM和XRD技术表征膜的形貌和厚度,线性极化法分别考察膜厚度、pH、和Cl浓度对纳米膜电极耐腐蚀性能影响.电化学交流阻抗检测纳米TiO2膜在 0. 5mol/LNaCl溶液中的阻抗随浸泡时间的变化,光电子能谱技术测定了经浸泡 1008h后的纳米膜中各元素相对百分含量和价态.结果表明:在中性或碱性条件下,厚度为 375~464nm的纳米膜其耐腐蚀性随浸泡时间的延长呈现初期增加而后稳定,浸泡 48h后腐蚀电流较之浸泡初期降低 2个数量级,耐腐蚀电阻增加 2个数量级,在浸泡 1 008h内没有发现腐蚀的产物,Fe是以原子态扩散到膜中.  相似文献   

8.
Nickel was deposited on a copper substrate from aqueous and nonaqueous ethanol electrolytes. X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and chronovoltametry, scanning electron microscopy, and atomic force microscopy were used to study the effect of the solvent on the surface and corrosion properties of the Ni coatings formed. Unifom and relatively smooth Ni films were obtained as measured with microscopy techniques. The formation of a passive film in acidic, alkaline, and neutral chloride-containing media was confirmed with X-ray photoelectron spectroscopy. The water-based nickel-plating electrolyte makes it possible to deposit coatings with higher corrosion resistance as compared with coatings deposited from ethanol electrolyte in NaOH and NaCl media. The proposed mechanism of corrosion in a 0.5 M H2SO4 solution involves cycles of active-passive surface behavior due to its passivation by corrosion products.  相似文献   

9.
The corrosion behavior of electrodeposited nanocrystalline (NC) zinc coatings with an average grain size of 43 nm was investigated in 3.5% NaCl solutions in comparison with conventional polycrystalline (PC) zinc coatings by using electrochemical measurement and surface analysis techniques. Both polarization curve and electrochemical impedance spectroscopy (EIS) results indicate that NC and PC coatings are in active state at the corrosion potentials, and NC coatings have much higher corrosion resistance than PC ones. The corrosion products on both coating surfaces are mainly composed of ZnO and Zn5(OH)8Cl2·H2O, but the corrosion products can form a relatively more protective layer on NC coating surfaces than on PC coatings. The EIS characteristics and corrosion processes of PC and NC zinc coatings during 330 h of immersion were discussed in detail.  相似文献   

10.
在新研发的硫酸盐三价铬镀厚铬的镀液体系中, 运用线性扫描伏安法(LSV)和循环伏安法(CV)对三价铬在铜电极表面的电沉积过程进行研究, 并运用X射线荧光测厚仪、扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、X射线衍射仪(XRD)、显微硬度计和Tafel曲线表征铬镀层厚度、形貌、组成、结构、显微硬度及在3.5wt% NaCl溶液中的耐蚀性. 结果表明, 在该体系中三价铬的沉积过程分两步进行(Cr3+ + e →Cr2+ , Cr2+ + 2e → Cr), 第一步得到1个电子, 受电化学过程和扩散过程共同控制, 第二步得到2个电子, 为扩散控制下的不可逆过程; 该镀层为瘤状纳米晶结构, 镀层中含有少量的铁元素(1.10 wt%), 显微硬度达到789.2 Hv, 镀层在3.5wt% NaCl溶液中的腐蚀电位(Ecorr)为-0.29 V, 腐蚀电流密度(jcorr)为9.26×10-5 A·dm-2.  相似文献   

11.
The electrochemical polymerization of polypyrrole (Ppy) films on AZ31Mg alloys was carried out using cyclic voltammetery in 0.5 M sodium salicylate solution containing 0.25 M pyrrole and different concentration of sodium fluoride (NaF). Corrosion performance of the Ppy film was assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 % NaCl solution. It was observed that Ppy coatings doped in the presence of 100 ppm NaF provide the best corrosion protection for magnesium and the corrosion potential shifted about 290 mV toward nobler potentials and decrease the corrosion current density about one order of magnitude. The surface analysis of the coatings showed that the addition of F? dopant anions led to an improvement in the smoothness, thickness, and adhesion quality of the synthesized Ppy coating on the Mg surface. The scanning electron microscopy (SEM) studies of the fluoride-doped Ppy films revealed that the synthesized coating has a closely packed globular structure which was composed of nanoparticles of Ppy.  相似文献   

12.
Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol–gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L?1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serum proteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in protein-containing solutions.  相似文献   

13.
在Na2SiO3-KOH电解液体系中添加一定量的(NaPO3)6, 利用微弧氧化(MAO)技术在AZ91D 镁合金表面制备了原位生长的陶瓷层. 采用动电位极化和电化学阻抗谱(EIS)技术研究了添加(NaPO3)6前后, 制备的陶瓷层在3.5%(w) NaCl溶液中的室温电化学行为. 结果表明, 添加(NaPO3)6后, 陶瓷层的自腐蚀电位显著上升, 自腐蚀电流密度明显减小. 这主要是由于(NaPO3)6增加了反应过程中基体镁合金表面的“氧空位”和溶液中PO3-4的含量, 促使元素Mg在金属/膜层(M/F)界面上快速形成相应氧化物, 从而增加了陶瓷层的厚度和致密性. 根据电化学反应体系和陶瓷层的特殊结构, 建立了合理的等效电路, 并结合EIS 数据, 分析了添加(NaPO3)6提高陶瓷层耐电化学腐蚀性能的机理.  相似文献   

14.
在高强钢表面制备了防护性溶胶凝胶涂层,并研究了不同浓度二氧化硅纳米粒子的加入对于涂层形貌、耐蚀性和硬度的影响。采用扫描电子显微镜(SEM)和电子能谱(EDS)观察了涂层的微观结构和成分;采用显微硬度计测试了涂层的硬度;采用电化学方法研究了二氧化硅纳米粒子的浓度对于涂层耐蚀性能的影响;采用傅里叶红外光谱研究涂层的化学结构,进而探讨了二氧化硅纳米粒子对于涂层的强化机理。结果显示涂层加入二氧化硅纳米粒子的最佳浓度为500 mg.L-1,此条件下的涂层表面均匀致密,有较高的硬度并且在3.5%NaCl溶液中体现出较好的耐蚀作用。纳米粒子在溶胶中反应形成活性羟基基团并与硅烷发生反应生成空间网状结构,从而强化涂层。  相似文献   

15.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

16.
Electrodeposited zinc–nickel alloy coatings have been widely adopted for surface treatment of automobile body steel sheet for high corrosion resistance. The corrosion behavior of the coatings has been related with the components of nickel, and the zinc–nickel alloy passive coatings have much higher corrosion resistance than that of zinc–nickel alloy coatings. In the present paper, the corrosion resistance behavior of the zinc–nickel alloy coatings obtained by new process and formulation has been studied by means of the electrochemistry test and neutral salt spray test. And it is discovered that the properties of corrosion resistance of zinc–nickel alloy passive coatings were better than that of zinc passive coatings, Cadmium passive coatings and alloys of electrodeposited cadmium–titanium. The components of corrosion productions, in terms of X‐ray diffraction (XRD), are mainly ZnO, ZnCl2 · 4Zn(OH)2 and small quantity of 2ZnCO3· 3Zn(OH)2. The component of zinc–nickel alloy coatings has been investigated with Glow Discharge Optical Emission Spectrometry (GDA‐750). And it is found that as the thickness of zinc–nickel alloy coatings increases, the component of zinc increases from beginning to end, but the peak value of nickel appears and an enrichment of nickel in the coatings comes into being. Because the electrodeposited zinc–nickel alloy coatings exhibit different alloy phases as a function of their alloy composition, in this paper, the crystal structure changing with the different component of nickel has been studied in terms of XRD. The result shows that electrodeposited zinc–nickel alloy has different phases: α‐phase, a solid solution of zinc in nickel with an equilibrium solubility of about more than 79% nickel; γ‐phase, an intermediate phase with a composition Ni5Zn21; η‐phase, a solid solution of nickel in zinc with less than 5% nickel; and δ‐phase (Ni3Zn22) appeared from η‐phase to α‐phase with increasing content of nickel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The method of “compensating additives” is used to determine the corrosion current of nickel and nickel powder in 0.5 M NaCl solution containing 0.01 M HCl. Comparing the corrosion currents measured on bulk nickel and nickel powder, the specific electrochemically active surface area of nickel powder is estimated.  相似文献   

18.
A study was made into the morphology, composition, and electrochemical and mechanical properties of protective composite coatings on various aluminum alloys, including those doped with Sc, Cu, and Ni. It was established that protective coatings significantly increase the corrosion resistance of the alloys in a 3% NaCl solution. Composite coatings produced by triple dip coating in an superdispersed polytetrafluoroethylene suspension have unique corrosion-resistance properties, reducing the corrosion current density for all the protected alloys to 3.1 × 10–11–4.0 × 10–12 A/cm2, which is more than three orders of magnitude lower than that for coatings formed by plasma electrolytic oxidation and five orders of magnitude lower than that for alloys without coating.  相似文献   

19.
Poly(o‐anisidine) (POA) and poly(o‐anisidine)‐TiO2 (POA‐TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT ‐ IR spectroscopy, XRD, SEM ‐ EDX and SEM. The corrosion protection performance of POA and POA‐TiO2 nanocomposite coatings was investigated in the 3.5% NaCl solution by using potentiodynamic polarization technique and electrochemical impedance spectroscopy. The results show that the corrosion rate of the nanocomposite coatings is about 900 times lower than the bare AA3004 under optimal conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
有机涂层失效过程的电化学阻抗和电位分布响应特征   总被引:5,自引:0,他引:5  
结合使用电化学阻抗谱(EIS)和扫描Kelvin探针(SKP)技术研究了在质量分数为3.5%的NaCl溶液中的铁基有机涂层劣化过程特征. 结果表明, 根据EIS和SKP的响应特征, 可将涂层劣化过程分为3个主要阶段: (Ⅰ) 涂层渗水阶段. 此时, 涂层渗水阶段的EIS阻抗持续减小, 但保持单容抗弧特征, SKP特征是电位持续降低, 但分布保持均匀; (Ⅱ) 基底金属腐蚀发生阶段. 此时, EIS阻抗快速下降, 并产生第二时间常数; SKP特征为表面电位差增大; (Ⅲ) 基底金属腐蚀发展与涂层失效阶段. 此时, EIS出现扩散尾, SKP电位差保持较大数值. 实验结果表明, 在研究有机涂层劣化过程中, EIS和SKP的结合使用能够互相补充完善, 获得涂层劣化过程中更为准确\, 可靠的变化信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号