首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A systematic investigation is conducted to evaluate the influence of dissolved manganese ions from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. Worse capacity fading is found in Li4Ti5O12-based full cells with increasing manganese ion addition. The interfacial film covered on Li4Ti5O12 anode is affected by the manganese ion contamination during cycling, which becomes thicker but more non-uniform, and is composed by less ratio of compact components and more ratio of loose components compared with that free of contamination. Such flawed passivation film cannot restrain the further penetration of electrolyte and inhibit the contact between electrolyte and Li4Ti5O12 anodes efficiently, thus triggering more interfacial reactions and that should be the reason for the more severe capacity degradation. Accordingly, we suggest that in addition to optimizing the chemistry and microstructure of Li4Ti5O12 electrode, more attention should also be paid to minimizing the destructive effect imposed on the passivation film of Li4Ti5O12 electrode by the transition metal ion contaminations.  相似文献   

2.
Yttrium-doped lithium manganese oxide (LiMn0.98Y0.02O2) was prepared by ion exchange of lithium for sodium in NaMn0.98Y0.02O2 precursors obtained by using rheological phase reaction method. This material had small particle size, which was composed of grain size of about 100 nm. Especially, LiMn0.98Y0.02O2 delivered the initial discharge capacity of about 191 mA h g−1 at room temperature when cycled between 2.0 and 4.4 V vs Li/Li+. Moreover, it showed an excellent cycling behavior, its specific capacity remained above 173 mA h g−1 after 20 cycles, and the material did not transform into spinel structure during the electrochemical cycling according to the cyclic voltammograms and X-ray powder diffraction. The electrochemical results revealed that the doping of Y3+ improved the performance of LiMnO2 considerably.  相似文献   

3.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

4.
Porous LiMn2O4 microsheets with micro-nanostructure have been successfully prepared through a simple carbon gel-combustion process with a microporous membrane as hard template. The crystal structure, morphology, chemical composition, and surface analysis of the as-obtained LiMn2O4 microsheets are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscope (XPS). It can be found that the as-prepared LiMn2O4 sample presents the two-dimensional (2-D) sheet structure with porous structure comprised with nano-scaled particles. As cathode materials for lithium-ion batteries, the obtained LiMn2O4 microsheets show superior rate capacities and cycling performance at various charge/discharge rates. The LiMn2O4 microsheets exhibit a higher charge and discharge capacity of 137.0 and 134.7 mAh g?1 in the first cycle at 0.5 C, and it remains 127.6 mAh g?1 after 50 cycles, which accounts for 94.7% discharge capacity retention. Even at 10 C rate, the electrode also delivers the discharge capacity of 91.0 mAh g?1 after 300 cycles (93.5% capacity retention). The superior electrochemical properties of the LiMn2O4 microsheets could be attributed to the unique microsheets with porous micro-nanostructure, more active sites of the Li-ions insertion/deinsertion for the higher contact area between the LiMn2O4 nano-scaled particles and the electrolyte, and better kinetic properties, suggesting the applications of the sample in high-power lithium-ion batteries.  相似文献   

5.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

6.
The surface of the spinel LiMn2O4 was coated with AlF3 by a chemical process to improve its electrochemical performance at high temperatures. The morphology and structure of the original and AlF3-coated LiMn2O4 samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM). All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. It was found that the surfaces of the original LiMn2O4 samples were covered with a nanolayer AlF3 after the treatment. The charge/discharge of the materials were carried at 220 mA/g in the range of 3.0 and 4.4 V at 55°C. While the original LiMn2O4 showed 17.8% capacity loss in 50 cycles at 55°C, the AlF3-coated LiMn2O4 (118.1 mA h/g) showed only 3.4% loss of the initial capacity (122.3 mA h/g) at 55°C. It is obvious that the improvement in cycling performance of the coated-LiMn2O4 electrode at 55°C is attributed to the presence of AlF3 on the surface of LiMn2O4. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 817–819. The article is published in the original  相似文献   

7.
Among the various positive electrode materials investigated for Li-ion batteries, spinel LiMn2O4 is one of the most important materials. Small particles of the active materials facilitate high-rate capability due to large surface to mass ratio and small diffusion path length. The present work involves the synthesis of submicron size particles of LiMn2O4 in a quaternary microemulsion medium. The precursor obtained from the reaction is heated at different temperatures in the range from 400 to 900 °C. The samples heated at 800 and 900 °C are found to possess pure spinel phase with particle size <200 nm, as evidenced from XRD, SEM, and TEM studies. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g−1 at C/5 rate, and there is a moderate decrease in capacity by increasing the rate of charge–discharge cycling. Studies also include charge–discharge cycling and ac impedance studies in temperature range from −10 to 40 °C. Impedance data are analyzed with the help of an equivalent circuit and a nonlinear least squares fitting program. From temperature dependence of charge-transfer resistance, a value of 0.62 eV is obtained for the activation energy of Mn3+/Mn4+ redox process, which accompanies the intercalation/deintercalation of the Li+ ion in LiMn2O4.  相似文献   

8.
LiMn2O4 is one of the most promising cathode materials due to its high abundance and low cost. However, the practical application of LiMn2O4 is greatly limited owing to its low volumetric energy density. Therefore, increasing its energy density is an urgent problem to be resolved. Herein, using the simple and mass production preferred solid-state reaction, surficial Nb-doped LiMn2O4 composed of the truncated octahedral or spherical-like primary particles are successfully synthesized. Auger electron spectroscopy (AES) and X-ray diffraction (XRD) characterizations confirm that most of Nb5+ enrich in the surficial layer of the particles to form a LiMn2-xNbxO4 phase. This kind of doping can increase the specific discharge capacity of LiMn2O4 materials. Contrast with the pristine LiMn2O4, the discharge capacity of LiMn1.99Nb0.01O4-based 18650R-type battery increases from 1497 to 1705 mAh with the volumetric energy density increasing by ~?13.9%, benefiting from the joint increments of the specific discharge capacity from 119.5 to 123.7 mAh g?1 and the compacted density from 2.81 to 3.10 g cm?3. Furthermore, the capacity retention after 500 cycles at 1 C (1500 mA) is also improved by 17.1%.
Graphical abstract ?
  相似文献   

9.
Electrolytes of 1 M blend salts (LiPF6 and tetraethylammonium tetrafluoroborate, Et4NBF4) have been investigated in supercapacitor battery system with composite LiMn2O4 and activated carbon (AC) cathode, and Li4Ti5O12 anode. The results obtained with the blend salts electrolytes are compared with those obtained with cells build using standard 1 M LiPF6 dissolved in ethylene carbonate + dimethyl carbonate + ethyl (methyl) carbonate (EC + DMC + EMC, 1:1:1 wt.%) as electrolyte. It is found that the blend salts electrolyte performs better on both electrochemical and galvanostatic cycling stability, especially cycled at 4 C rate. When the concentration of LiPF6 is 0.2 M and Et4NBF4 is 0.8 M, the capacity retention of the battery is 96.23% at 4 C rate after 5,000 cycles, much higher than that of the battery with standard 1 M LiPF6 electrolyte, which is only 62.35%. These results demonstrate that the blend salts electrolyte can improve the galvanostatic cycling stability of the supercapacity battery. Electrolyte of 0.2 M LiPF6 + 0.8 M Et4NBF4 in EC + DMC + EMC (1:1:1 wt.%) is a promising electrolyte for (LiMn2O4 + AC)/Li4Ti5O12.  相似文献   

10.
The carbon coated nanoflower-like Li4Ti5O12/C composites were prepared via hydrothermal method followed by surface modification using sucrose or polyvinylidene fluoride (PVDF) as carbon sources. X-ray diffraction, SEM, TEM, Raman spectroscopy, TGA, and the electrochemical measurements were used for the materials characterization. Such modification leads to the formation of a high-conductive carbon coating. In the case of polyvinylidene fluoride use, fluorination of Li4Ti5O12 surface takes place also. As a result, electrochemical performance of the obtained composites is improved. In the potential range of 1–3 V, Li4Ti5O12, Li4Ti5O12/CPVDF, and Li4Ti5O12/Csucrose exhibit, respectively, the discharge capacities of 142.5, 154.3, and 170.4 mAh/g at a current of 20 mA/g and 57.2, 82.1, and 89.3mAh/g at a current of 3200 mA/g. When cycled in a potential range of 0.01–3 V, the discharge capacity of Li4Ti5O12/CPVDF increases up to 252 mAh/g at 20 mA/g.  相似文献   

11.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

12.
A comparative study of submicro-crystalline spinel LiMn2O4 powders prepared by two different soft chemical routes such as hydrothermal and sol–gel methods is made. The dependence of the physicochemical properties of the spinel LiMn2O4 powder has been extensively investigated by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, cyclic voltammogram, charge–discharge test, and electrochemical impedance spectroscopy (EIS). The results show that the electrochemical performances of spinel LiMn2O4 depend strongly upon the synthesis method. The LiMn2O4 powder prepared by hydrothermal route has higher specific capacity and better cycling performance than the one synthesized from sol–gel method. The former has the max discharge capacity of 114.36 and 99.78 mAh g−1 at the 100th cycle, while the latter has the max discharge capacity of 98.67 and 60.25 mAh g−1 at the 100th cycle. The selected equivalent circuit can fit well the EIS results of synthesized LiMn2O4. For spinel LiMn2O4 from sol–gel method and hydrothermal route in the first charge process R SEI remain almost invariable, R e and R ct first decreasing and then increasing with the increase of polarization potential.  相似文献   

13.
Nano-structured spinel Li2Mn4O9 powder was prepared via a combustion method with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O), and oxalic acid (C2H2O4·2H2O) as raw materials, followed by calcination of the precursor at 300 °C. The sample was characterized by X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopy techniques. Electrochemical performance of the nano-Li2Mn4O9 material was studied using cyclic voltammetry, ac impedance, and galvanostatic charge/discharge methods in 2 mol L−1 LiNO3 aqueous electrolyte. The results indicated that the nano-Li2Mn4O9 material exhibited excellent electrochemical performance in terms of specific capacity, cycle life, and charge/discharge stability, as evidenced by the charge/discharge results. For example, specific capacitance of the single Li2Mn4O9 electrode reached 407 F g−1 at the scan rates of 5 mV s−1. The capacitor, which is composed of activated carbon negative electrode and Li2Mn4O9 positive electrode, also exhibits an excellent cycling performance in potential range of 0–1.6 V and keeps over 98% of the maximum capacitance even after 4,000 cycles.  相似文献   

14.
Compatibility of the lithium-titanium spinel Li4Ti5O12 in contact with precursors of lithium-conducting solid electrolytes of composition Li1.3Al0.3Ti1.7(PO4)3 (LATP), Li1.5Al0.5Ge1.5(PO4)3 (LAGP), Li0.5La0.5TiO3 (LLT) was studied. It was found that, in sintering of Li4Ti5O12 brought in contact with LATP and LAGP, a solid-phase reaction occurs to give nonconducting phases (TiO2 and Li3PO4). The conductivity of the stable composite Li4Ti5O12/LLT (10%) is higher than that of the starting Li4Ti5O12, which makes it possible to regard the composite as a promising anode material for lithium-ion batteries.  相似文献   

15.
Phase-pure nanocrystalline Li4Ti5O12 with BET surface areas between 183 and 196 m2/g was prepared via an improved synthetic protocol from lithium ethoxide and titanium(IV) butoxide. The phase purity was proved by X-ray powder diffraction, Raman spectroscopy and cyclic voltammetry. Thin-film electrodes were prepared from two nanocrystalline samples of Li4Ti5O12 and one microcrystalline commercial sample. Li-insertion behavior of these electrodes was related to the particle size.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

16.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

17.
Solid-state thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 is prepared by spray technique using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both electrolyte and substrate. The thin-film battery is heat-treated by rapid thermal annealing. Phase identification, morphology and electrochemical properties of the sintered pellets and thin-film battery are investigated by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge experiments, respectively. The results show that LiMn2O4 films with some pores are well deposited on the surface of Li1.3Al0.3Ti1.7(PO4)3 sintered pellet. The discharge current density and temperature have considerable effect on discharge capacity of the thin-film battery. LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 thin-film battery can be easily cycled with a capacity loss of 0.213% per cycle when 50 cycles are carried out.  相似文献   

18.
Undoped lithiation of stoichiometric spinel using lithium hydride LiH up to the composition Li2.25Mn2O4 was performed. A homogeneous material with a given Li: Mn ratio was obtained by mechanochemical activation with sequential annealing of a LiMn2O4–LiH mixture in a high-purity argon atmosphere and then in air or oxygen at 373–553 K.  相似文献   

19.
Synthesis of Co3O4 powders by the microwave method from citrate precursors is described. The structural, surface, and thermogravimetric characteristics of the resulting powders were studied depending on the cobalt ions and citric acid ratio. The specific capacity of the samples was determined to be from 665 to 831 mA h g–1 after 100 cycles at a current density of 0.5C.  相似文献   

20.
Li2ZnTi3O8/C nanocomposite has been synthesized using phenolic resin as carbon source in this work. The structure, morphology, and electrochemical properties of the as-prepared Li2ZnTi3O8 samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy (RS), galvanostatic charge–discharge, and AC impedance spectroscopy. SEM images show that Li2ZnTi3O8/C was agglomerated with a primary particle size of ca. 40 nm. TEM images reveal that a homogeneous carbon layer (ca. 5 nm) formed on the surface of Li2ZnTi3O8 particles which is favorable to improve the electronic conductivity and inhibit the growth of Li2ZnTi3O8 during annealing process. The as-prepared Li2ZnTi3O8/C composite with 6.0 wt.% carbon exhibited a high initial discharge capacity of 425 and 159 mAh g?1 at 0.05 and 5 A g?1, respectively. At a high current density of 1 A g?1, 95.5 % of its initial value is obtained after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号