首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Berberine is an isoquinoline alkaloid isolated from Chinese herbal medicines such as Coptis chinensis. It has many pharmacological actions, such as antibacterial, hypoglycemic, anti-inflammatory, and so on. However, due to the low lipophilicity of berberine, it is difficult to penetrate the bacterial cell membrane and also difficult to be absorbed orally and usually needs a relatively high dose to achieve the ideal effect. The purpose of this study is to transform the structure of berberine in order to improve the bioavailability of berberine and reduce the dosage. Moreover, we introduce a pharmacophore named Canagliflozin, a hypoglycemic drug (which was also found to have potential anti-bacterial activity) into BBR to see whether this new compound has more existed activities. We at first connected berberine with Canagliflozin, to form a new compound (BC) and see whether BC has synergic effects. We use microbroth dilution method to determine the minimum inhibitory concentration of BC, determine the bacterial growth with the enzyme labeling instrument, observe the formation of bacterial biofilm with crystal violet staining method, observe the bacterial morphology with field emission scanning electron microscope, and determine the intracellular protein with SDS-PAGE. The above indicators reflect the damage of BC to bacteria. New compound BC was successfully obtained by chemical synthesis. The minimal inhibitory concentration of compound BC on three bacteria was significantly better than that of berberine and canagliflozin alone and the combination of berberine and canagliflozin. Moreover, compound BC has obvious destructive effect on bacterial morphology and biofilm, and the compound also has destructive effect on intracellular proteins. Therefore, new compound BC has broad-spectrum antibacterial activity and the inhibitory effect of BC might play a role by destroying the integrity of biofilm and the intracellular protein of bacteria. In conclusion, we create a new molecular entity of berberine and Canagliflozin chimera and open up a new prospect for berberine derivatives in the treatment of bacterial infection.  相似文献   

2.
The marine-derived halipeptins A (1a) and D (1d) and their analogues 3a, 3d and 4a, 4d were synthesized starting from building blocks 10, 13, 14a or 14d, 15, and 16. The first strategy for assembling the building blocks, involving a macrolactamization reaction to form the 16-membered ring hydroxy thioamide 52d as a precursor, furnished the epi-isoleucine analogue (4d) of halipeptin D, whereas a second approach involving thiazoline formation prior to macrolactamization led to a mixture of halipeptins A (1a) and D (1d) and their analogues 3a, 3d (epimers at the indicated site) and 4a, 4d (epimers at the indicated site). The same route starting with D-Ala resulted in the exclusive formation of the epimeric halipeptin D analogue 3d. The synthesized halipeptins, together with the previously constructed oxazoline analogues 5d and 6d, were subjected to biological evaluation revealing anti-inflammatory properties for 1a, 1d, and 6d while being noncytotoxic against human colon cancer cells (HCT-116).  相似文献   

3.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

4.
The thermal cycloaromatization reactions of (Z)-3-hexene-1,5-diynes (enediynes) and (Z)-1,2,4-heptatrien-6-ynes (enyne-allenes) provide easy entries to a variety of carbon biradicals. Several new synthetic routes to these highly unsaturated compounds were developed by using multifunctional reagents properly substituted with combinations of boron, silicon, and tin appendages. Condensation of γ-(trialkylsilyl)allenylboranes 1 and 2 with conjugated acetylenic and allenic aldehydes followed by the elimination step of the Peterson olefination reaction furnished enediynes and enyne-allenes with high geometric purity. Convenient procedures for the synthesis of enediynes and enyne-allenes were also developed by using alkenylboronic ester 28 and the trimethyltin-substituted alkenylboranes 34 for cross-coupling reactions. On heating, acyclic enyne-allene 22 underwent a sequence of intramolecular transformations through biradical intermediates to form 26 , providing a new example of a one-step 0 → ABCD ring construction of the tetracyclic-steroidal skeleton.  相似文献   

5.
Benzo[ghi]perylene 1,2,4,5,10,11-hexacarboxylic trialkylimide and dialkylimido-dialkyl ester derivatives, displaying a thermodynamically stable hexagonal columnar liquid-crystalline phase at room temperature, have been obtained by the use of previously unexplored chiral racemic α-branched alkylimide functions. One of the trialkylimides described here is the first room temperature columnar solely oligo-alkylimide-substituted arene, and thus constitutes a prototype case of self-assembling organic acceptor materials. As the related hexacarboxylic hexaesters are found to exhibit only a weak tendency to form columnar mesophases, benzo[ghi]perylene 1,2,5,10-tetracarboxylic tetraalkyl esters have been synthesized by regioselective oxidative Diels-Alder addition of maleic anhydride to 3,10-dicyanoperylene, and a room temperature hexagonal columnar mesophase was obtained with branched alkyl chains. The acceptor-type electronic properties of the tri- and diimides have been found to be considerably more pronounced than those of the hexa- and tetracarboxylic esters, and to approach those of the prototype acceptor material C(60). The formation of bathochromically absorbing donor-acceptor complexes was observed with a di- or triimide as acceptor and a tetraester as donor, but not with a hexaester as donor. Exploiting the non-negligible differences in reduction and oxidation potentials between all four types of materials, the minimum HOMO energy difference necessary for charge-transfer-complex formation has been determined to lie between 0.29 and 0.35 eV.  相似文献   

6.
Drying and pyrolysis of wood particles: experiments and simulation   总被引:3,自引:0,他引:3  
The objective of this study is to develop a flexible and stable numerical method to predict the thermal decomposition of large wood particles due to drying and pyrolysis. At a later stage, this model is applied to each particle of a packed bed and thus, forms the entire packed bed process as a sum of individual particle processes. Therefore, this approach can deal with particles of different sizes, shapes and properties. A general formulation of the conservation equations allows the geometry of a fuel particle to be treated as a plate, cylinder or sphere. The various processes such as heat-up, drying and pyrolysis are described by a set of one-dimensional and transient conservation equations for mass and energy. This allows for simultaneous processes e.g. reactions in time and covers the entire range between transport-limited (shrinking core) and kinetically limited (reacting core) reaction regimes. The particles interact with a gas phase by heat and mass transfer taking into account the Stefan correction due to the gas outflow during conversion. Experiments carried out span a temperature range between T=300 and 900 °C for particle sizes varying between 8 and 17 mm. A comparison between measurements and predictions of drying models yielded satisfactory agreement only for the constant evaporation temperature model and thus, indicating, that the drying process is transport limited by heat transfer for large wood particles. Likewise, predicted results of pyrolysis for the above-mentioned range of temperatures and sizes agreed satisfactorily with measurements.  相似文献   

7.
The present status of both process gas (PGC) and liquid (PLC) chromatographs is examined with regard to the main criteria that any process analyser should fulfil: reliability, credibility, fast response and low maintenance. Despite considerable improvements in the construction of these instruments, owing to the materials used, progress in technology and microelectronics and the advent of microprocessors, their reliability is still a matter of great concern.The deferred standard concept may offer a solution for these problems. Progress is also made by the introduction of fused-silica capillary columns in PGC, which allow a better resolution and a greater speed of analysis. However, this technology requires a redesign of PGCs.Further, particularly for PLC, a new approach based on the concept of instability instead of stability of the main parameters is proposed. This approach leads to a simpler, more reliable and less expensive PLC. The consequence is some radical changes in the design and functions of both the analytical and control units of the chromatograph. The analytical unit is plugged into the chemical reactor and is not temperature controlled. The control unit, incorporating a microcomputer and dedicated software, is able to characterize the peaks despite their fluctuating retention times, to readjust the time functions of the analytical sequence and to validate the detector response in the case of fluctuations of temperature or mobile phase flow-rate. This approach is useful for the implementation of temperature programming and, according to the validation function of the deferred standard, to allow the use of selective but unstable detectors in PGC.Simpler in hardware, PGCs and PLCs could become “intelligent apparatus” capable of new qualitative and quantitative tasks at a more competitive cost.  相似文献   

8.
We start by pointing out relationships between production of information, global simulation, and supercomputing, thus placing our research activities in today's society context. Then we detail the evolution in hardware and software for 1CAP, our experimental supercomputer, which we claim to be especially well suited for supercomputing in science and engineering. A preliminary discussion of 1CAP/3090 (our latest experimental effort) is included. Many examples from different disciplines are provided to verify our assertions. We “prove” our point by presenting an example of global supercomputing. Starting with 3 nuclei and 10 electrons, building up to a single water molecule, then to a few hundred, we learn, for example, about Raman, infrared, and neutron scattering; we then move up to a few hundred thousand molecules to analyze particle flow and obstructions; finally we experiment, but only preliminarily, with a few million particles to learn more on nonequilibrium dynamics as in the Rayleigh-Benard systems. In this way, quantum mechanics is overlapped with statistical mechanics and expanded into microdynamics. The entire paper is finally reanalyzed from a different perspective, presenting rather systematically, even if most briefly, our ideas on “modern” computational chemistry, where quantum mechanics is as much needed as fluid dynamics and graphics. In this section the main computational techniques are analyzed in terms of computer programs and their associated flow diagrams to solve the basic equations using parallel supercomputers.  相似文献   

9.
Chemical and environmental engineering and biotechnology are among the fields now being transformed by continually increasing levels of automation. Whereas the objective in other sectors of industry is simply to increase efficiency, here considerations of system theory or safety demand a high level of automation. Either the processes are too complex and require multifunctional control with feedback, or an analysis of the safety requirements shows the necessity for a certain degree of redundancy in the safety measures, and for elimination of human error as a risk factor. With regard to quality control, cost-benefit analyses lead to striking conclusions which again indicate the need for highly automated, and above all reliable, systems to eliminate rejects. The crux of any automated system is the measurement and control technology; of central importance is the rapid, reliable, and in some cases continuous, measurement and interpretation of key processes or control variables. For this purpose a wide variety of recording instruments and sensors are used to give as accurate a picture as possible of the state of the system. It is obvious from this that the performance of the control system is critically dependent on the sensors. Errors in the measured quantities can become amplified in the control variables or, in dynamic systems, can lead to undesirable operating conditions. Moreover, as a consequence of great advances in microelectronics, “intelligent sensors” which can calibrate and control themselves will be one of the key technologies of the nineties. Unless fast and immediate information on the true current status of a system is available, microprocessors as control devices react blindly and unpredictably to errors in input information. New discoveries in the fields of electronic, electrochemical, and optical transducers are now being applied in heterogeneous catalysis and surface physics, and in biochemistry (enzymology and immunology); in these fields new chemical sensor principles are being tested, which could revolutionize instrumental methods of molecular analysis in particular, owing to their very favorable cost-performance relationship. This article aims to give an up-to-date overview of the current state of the art in these developments, with emphasis on their importance for analysis and their significance in relation to the chemist's interest in mechanisms for identifying substances.  相似文献   

10.
Reed JL 《Inorganic chemistry》2008,47(13):5591-5600
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.  相似文献   

11.
Organophosphorus (OP) nerve agents and pesticides present significant threats to civilian and military populations. OP compounds include the nefarious G and V chemical nerve agents, but more commonly, civilians are exposed to less toxic OP pesticides, resulting in the same negative toxicological effects and thousands of deaths on an annual basis. After decades of research, no new therapeutics have been realized since the mid-1900s. Upon phosphylation of the catalytic serine residue, a process known as inhibition, there is an accumulation of acetylcholine (ACh) in the brain synapses and neuromuscular junctions, leading to a cholinergic crisis and eventually death. Oxime nucleophiles can reactivate select OP-inhibited acetylcholinesterase (AChE). Yet, the fields of reactivation of AChE and butyrylcholinesterase encounter additional challenges as broad-spectrum reactivation of either enzyme is difficult. Additional problems include the ability to cross the blood brain barrier (BBB) and to provide therapy in the central nervous system. Yet another complication arises in a competitive reaction, known as aging, whereby OP-inhibited AChE is converted to an inactive form, which until very recently, had been impossible to reverse to an active, functional form. Evaluations of uncharged oximes and other neutral nucleophiles have been made. Non-oxime reactivators, such as aromatic general bases and Mannich bases, have been developed. The issue of aging, which generates an anionic phosphylated serine residue, has been historically recalcitrant to recovery by any therapeutic approach—that is, until earlier this year. Mannich bases not only serve as reactivators of OP-inhibited AChE, but this class of compounds can also recover activity from the aged form of AChE, a process referred to as resurrection. This review covers the modern efforts to address all of these issues and notes the complexities of therapeutic development along these different lines of research.  相似文献   

12.
We have designed and synthesized four compounds integrating luminescent and photochromic components in their molecular skeletons. Two of them combine a nitrospiropyran photochrome with either one or two naphthalene fluorophores and can be prepared in three synthetic steps. The other two consist of a nitrospiropyran photochrome and a benzophenone phosphore connected by either ether or ester linkages and can be prepared in six or five, respectively, synthetic steps. The luminescent components of these assemblies are expected to transfer energy intramolecularly to the photochromic species upon excitation and encourage their photoisomerization. Consistently, the phosphorescence of the benzophenone units and the fluorescence of the naphthalene components are effectively quenched when these species are connected covalently to a nitrospiropyran. Nonetheless, the photoisomerization of the photochrome becomes significantly less efficient after the covalent attachment to the luminescent partner. The fraction of incident radiations absorbed by either the benzophenone or the naphthalene fragment does not promote the isomerization of the photochromic appendage. Instead, irreversible transformations occur upon irradiation of the luminophore-photochrome assemblies. Thus, the covalent attachment of a benzophenone or a naphthalene to a nitrospiropyran is not a viable strategy to improve the photocoloration efficiency of the photochromic component. Even although the very same luminophores are known to sensitize intermolecularly the isomerization of nitrospiropyrans, the transition to covalent luminophore-photochrome assemblies tends to promote degradation, rather than sensitization, upon irradiation.  相似文献   

13.
Although osmabenzyne, osmanaphthalyne, osmaphenanthryne, and osmaanthracyne have been previously reported, the synthesis of polycyclic osmaarynes is still a challenge. Herein, we report the successful synthesis of the first pentacyclic osmaarynes (pyreno[b]osmabenzynes 1 a and 2 a ) and hexacyclic osmaaryne (peryleno[b]osmabenzyne 3 a ). Nucleophilic reaction of osmaarynes was used to obtain the corresponding pyreno[b]osmium complexes ( 1 and 2 ) and peryleno[b] osmium complex ( 3 ), which exhibited near-infrared luminescence and aggregation-induced emission (AIE) properties. Complexes 2 and 3 are resistant to photodegradation, and complex 2 has better photothermal conversion properties than 3 .  相似文献   

14.
Chemical biology can be defined as the study of biological phenomena from a chemical approach. Based on the analysis of relevant biological phenomena and their structural foundation, unsolved problems are identified and tackled through a combination of chemistry and biology. Thus, new synthetic methods and strategies are developed and employed for the construction of compounds that are used to investigate biological procedures. Solid-phase synthesis has emerged as the preferred method for the synthesis of lipidated peptides, which can be chemoselectively ligated to proteins of the Ras superfamily. The generated peptides and proteins have solved biological questions in the field of the Ras-superfamily GTPases that are not amendable to chemical or biological techniques alone.  相似文献   

15.
Recent investigations of the DNA interactions with cationic surfactants and catanionic mixtures are reviewed. Several techniques have been used such as fluorescence microscopy, dynamic light scattering, electron microscopy, and Monte Carlo simulations.

The conformational behaviour of large DNA molecules in the presence of cationic surfactant was followed by fluorescence microscopy and also by dynamic light scattering. These techniques were in good agreement and it was possible to observe a discrete transition from extended coils to collapsed globules and their coexistence for intermediate amphiphile concentrations. The dependence on the surfactant alkyl chain was also monitored by fluorescence microscopy and, as expected, lower concentrations of the more hydrophobic surfactant were required to induce DNA compaction, although an excess of positive charges was still required.

Monte Carlo simulations on the compaction of a medium size polyanion with shorter polycations were performed. The polyanion chain suffers a sudden collapse as a function of the concentration of condensing agent, and of the number of charges on the polycation molecules. Further increase in the concentration increases the degree of compaction. The compaction was found to be associated with the polycations promoting bridging between different sites of the polyanion. When the total charge of the polycations was lower than that of the polyanion, a significant translational motion of the compacting agent along the polyanion was observed, producing only a small-degree of intrachain segregation, which can explain the excess of positive charges necessary to compact DNA.

Dissociation of the DNA–cationic surfactant complexes and a concomitant release of DNA was achieved by addition of anionic surfactants. The unfolding of DNA molecules, previously compacted with cationic surfactant, was shown to be strongly dependent on the anionic surfactant chain length; lower amounts of a longer chain surfactant were needed to release DNA into solution. On the other hand, no dependence on the hydrophobicity of the compacting agent was observed. The structures of the aggregates formed by the two surfactants, after the interaction with DNA, were imaged by cryogenic transmission electron microscopy. It is possible to predict the structure of the aggregates formed by the surfactants, like vesicles, from the phase behaviour of the mixed surfactant systems.

Studies on the interactions between DNA and catanionic mixtures were also performed. It was observed that DNA does not interact with negatively charged vesicles, even though they carry positive amphiphiles; however, in the presence of positively charged vesicles, DNA molecules compact and adsorb on their surface.

Finally Monte Carlo simulations were performed on the adsorption of a polyelectrolyte on catanionic surfaces. It was observed that the mobile charges in the surface react to the presence of the polyelectrolyte enabling a strong degree of adsorption even though the membrane was globally neutral. Our observations indicate that the adsorption behaviour of the polyelectrolyte is influenced by the response given by the membrane to its presence and that the number of adsorbed beads increases drastically with the increase of flexibility of the polymer. Calculations involving polymers with three different intrinsic stiffnesses showed that the variation is non-monotonic. It was observed also that a smaller polyanion typically adsorbs more completely than the larger one, which indicates that the polarisation of the membrane becomes less facilitated as the degree of disruption increases.  相似文献   


16.
硅醚类化合物广泛应用于有机合成、 分离分析和精细化工等领域. 六甲基二氮硅烷是近年来发展的一种新型硅基化试剂, 被用于硅醚的高效合成, 但由于六甲基硅烷较为惰性, 通常需要加入催化剂活化. 本文报道了一种无催化剂下醇、 酚的高效硅基化新方法. 研究结果表明, 该方法可以兼容一级苄醇、 杂芳基苄醇、 脂肪醇, 二级醇甚至三级醇, 多数反应可以实现定量转化, 无需柱层析即可实现产物的分离纯化. 该方法可以拓展到酚的高效硅醚化, 也可以很方便地放大到100 mmol, 收率达到99%, 表明该方法具有较好的实用价值.  相似文献   

17.
The synthesis of well-defined block copolymers from styrene and methyl acrylate via ATRP is discussed in this contribution. Kinetic studies on these block copolymerizations as well as characterization studies were performed to investigate the monomer composition in the respective PS and PMA blocks. MALDI-TOF-MS was performed to clarify the exact number of repeating units of each block and the total number of units in the block copolymer. Block copolymers up to 22 kDa could be analyzed by MALDI-TOF-MS, whereby polymers with PMA as first block showed a large second distribution corresponding to PMA homopolymers. However, SEC demonstrated that only a small amount of homopolymer was present indicating that care needs to be taken with interpreting MALDI-TOF-MS data, which is a qualitative rather than a quantitative technique.  相似文献   

18.
Recently the authors have proposed a list-processing approach to the modeling of algebraic quantum field theory methods in quantum mechanics in which the noncommutative algebra of quantum-mechanical operators is emulated by lists. The processing produces reordered sequences of elements of a ring with a unit commutator and generates dynamic structures which, for some initial arrangements, correspond to partially ordered graphs characterized by recurrence relations and combinatorial identities. Likewise, in another list-processing application to physical problems, a simulation of Feynman diagrams hinged on predominantly combinatorial aspects and demanded explicit generation of certain combinatorial objects. This motivated an investigation into the combinatorial nature of noncommutative list-processing and of recursive algorithms for explicit construction of combinatorial lists, which we now present. The emphasis is also placed on the consideration of associated graphs and the graph-theoretic origin of the appearance of recurrence relations in the reordering theorems of the noncommutative algebra.  相似文献   

19.
The synthesis of three bipyridyl-tagged reagents and one scavenger is described. Of the three reagents, the carbodiimide derivative proved to be effective as a coupling reagent for amide formation and the removal of the coupling side product from the reaction mixture by complexation onto a Cu-derivatised resin has been successfully demonstrated. This purification process was thoroughly optimised using a DOE approach and the procedure subsequently applied to the use of a bipyridyl-tagged amine as an isocyanate scavenger. Preliminary results clearly demonstrate the potential of using chelation tags such as bipyridine units as a means for removing solution phase reagents and scavengers from reaction mixtures providing an attractive alternative to their resin-bound and fluorous-tagged counter-parts.  相似文献   

20.
Precise temperature control of sample environments plays a key role while exploring biological systems or temperature-sensitive materials. We have developed a sample cell for inverted microscopes, which allows a temperature accuracy of ±0.05 K in a temperature range of 5 to 65 °C, with an absolute precession of ±0.1 K. Our sample cell is developed for requirements of single-molecule experiments, which comprises easy-to-clean and well-sealed devices to prevent solvent evaporation. The applied control algorithm permits a tunable independent setting of heat and cooling behavior and allows the application on microscopes without any objective heating. For measuring precise and absolute diffusion coefficients with two-focus fluorescence correlation spectroscopy, the exact control of the sample temperature is essential. We performed diffusion measurements of TetraSpeck 100-nm fluorescent latex particles and of temperature-sensitive microgels in aqueous solutions to demonstrate the excellent temperature stability and reproducibility of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号