首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将聚氨酯(PU)与聚N-异丙基丙烯酰胺(PNIPAM)半互穿网络聚合物(semi-IPN)通过浸入沉淀相转化方法制备成微孔膜,并从亲水性、吸水溶胀性以及透湿性等方面对其温度响应性进行了讨论.PNIPAM的引入使膜的亲水性、吸水性和透湿性大为改善,并显著提高了膜的温度响应能力;但与此同时也使得膜的韧性降低.当PU/PNIPAM为3/1时,可获得最好的综合性能.同传统无孔致密膜相比,PU/PNIPAM semi-IPN微孔膜的透湿机理是基于微孔的开闭,在维持显著的温敏透湿性的同时可实现较高的高温透湿量.  相似文献   

2.
You YZ  Zhou QH  Manickam DS  Wan L  Mao GZ  Oupický D 《Macromolecules》2007,40(24):8617-8624
We report synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering and atomic force microscopy. Due to the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided the copolymers with the ability to assemble into core-shell nanostructures with hydrophobic PNIPAM as a core and cationic PDMAEMA as stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while molecular weight of the assemblies decreased.  相似文献   

3.
Thermosensitive PNIPAM microcontainers were prepared by using silica particles as template. Silica particles were prepared by the St?ber method and surface modified with linear P(NIPAM-co-MPS) chains. PNIPAM shell was then fabricated on the P(NIPAM-co-MPS)-modified silica particles through precipitation polymerization of NIPAM and MBA. Finally, PNIPAM microcontainers were obtained by removing the silica cores with NaOH. The materials were characterized by TEM, FTIR, GPC, and DLS. The PNIPAM microcontainers exhibit good thermosensitivity. The method to fabricate thermosensitive PNIPAM shell can be generalized to a versatile method for preparing PNIPAM shell on particles with silica surface, which includes surface modification with P(NIPAM-co-MPS) and precipitation polymerization of NIPAM and MBA using the modified particles as seed. Through this method, PNIPAM shell was successfully fabricated on iron oxide/silica nanostructures with a wormlike shape and relatively large size, which demonstrates the versatility of the method.  相似文献   

4.
The interfacial properties of end-grafted temperature-responsive poly(N-isopropylacryamide) (PNIPAM) were quantified by direct force measurements both above and below the lower critical solution temperature (LCST) of 32 degrees C. The forces were measured between identical, opposing PNIPAM films and between a PNIPAM film and a lipid membrane. At the grafting densities and molecular weights investigated, the polymer extension did not change significantly above the LCST, and the polymers did not adhere. Below the LCST, the force-distance profiles suggest a vertical phase separation, which results in a diluter outer layer and a dense surface proximal layer. At large separations, the force profiles agree qualitatively with simple polymer theory but deviate at small separations. Importantly, at these low grafting densities and molecular weights, the end-grafted PNIPAM does not collapse above the LCST. This finding has direct implications for triggering liposomal drug release with end-grafted PNIPAM, but it increases the temperature range where these short PNIPAM chains function as steric stabilizers.  相似文献   

5.
Poly(N-isopropylacrylamide) (PNIPAM) physisorbed on gold surfaces in aqueous solutions has been studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption isotherms of the polymer, that is, the adsorbed mass versus the concentration of PNIPAM in solution, show distinctly different behaviors at temperatures below and above a lower critical solution temperature (LCST). Below the LCST, PNIPAM forms a single compact layer in solutions with concentrations up to 100 ppm in weight; above the LCST, much thicker films of PNIPAM form in the same concentration range. Changes in the dissipation factor versus solvent concentration show a behavior similar to those in the isotherms. The difference in the adsorption behavior below and above the LCST can be qualitatively explained in terms of the conformation difference of the polymer in its swelling and collapsed states.  相似文献   

6.
We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the nanoparticle shell. The particle size, volume phase transition temperature, and aggregation state can be modulated using temperature, pH, or ionic strength, providing a very versatile platform for applications in sensors, medical diagnostics, environmental remediation, etc. The nanoparticles have a glassy poly(methyl methacrylate) (PMMA) core of ca. 40 nm radius and a cross-linked PNIPAM anionic shell with either AA or MA comonomers. The particles, p(N-AA) and p(MA-N), respectively, have the same total charge but different charge distributions. While the p(MA-N) particles have the negative charges preferentially distributed toward the inner shell, in the case of the p(N-AA) particles the charge extends more to the particle outer shell. The volume phase transition temperature (T(VPT)) of the particles is affected by the charge distribution and can be fine-tuned by controlling the electrostatic repulsion on the particle shell (using pH and ionic strength). By suppressing the particle charge we can also induce temperature-driven particle aggregation.  相似文献   

7.
We report a study of colloidal thermosensitive core-shell particles by cryo-transmission electron microscopy (cryo-TEM). The particles consist of a solid core of poly(styrene), onto which a network of cross-linked poly(N-isopropylacrylamide) (PNIPAM) is affixed. In water, the shell of these particles swells when the temperature is low. Raising the temperature above 32 degrees C leads to a marked shrinking of the shell. In this letter, we present the first study of these core-shell particles by cryo-TEM in situ, that is, in aqueous solution. We demonstrate that the core-shell particles are well-defined and exhibit a narrow size distribution. In particular, the PNIPAM shell is compact and has a defined outer surface of a slightly irregular shape. The micrographs show that there are density fluctuations within the network. Cryo-TEM of the system above and below the transition temperature furnishes information about the thermosensitive particles that had not been available through other methods employed in previous investigations.  相似文献   

8.
In the present work, we have for the first time systematically investigated the ion specific reentrant behavior of poly(N-isopropylacryamide) (PNIPAM) in water-methanol mixtures. Turbidity measurements demonstrate that SCN(-) and ClO(4)(-) depress the reentrant transition, whereas other anions enhance the transition. As the anion changes from chaotropic to kosmotropic, the minimum critical phase transition temperature (T(min)) decreases and the corresponding volume fraction of methanol (X(M)) shifts to a larger value. Our results demonstrate that anion specificity is due to the anionic structure making/breaking effect on water/methanol complexes. Cations are found to have a lesser but still significant effect on the reentrant transition, and as T(min) decreases the corresponding X(M) also shifts to larger values as with the anions. Our studies show that cation specificity is induced by specific interactions between cations and PNIPAM chains. Furthermore, both anion and cation specificities are amplified as X(M) is increased due to the formation of additional water/methanol complexes. Calorimetry measurements demonstrate that the ion specificity is dominated by changes in entropy.  相似文献   

9.
Silver nanoparticles (Ag NPs) stabilized by a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), have been synthesized by the reduction of silver ions with NaBH(4) in aqueous solutions. The obtained Ag NPs are very stable at room temperature due to the extended coil conformation of the PNIPAM chain at temperatures below its volume phase transition temperature ( approximately 32 degrees C). At higher temperatures (such as 45 degrees C) above the phase transition of PNIPAM, only minute aggregation between Ag NPs was observed, showing that the collapsed PNIPAM chains still retain the ability to stabilize Ag NPs. The PNIPAM-stabilized Ag NPs were then characterized as a function of the thermal phase transition of PNIPAM by UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and cyclic voltammeter. Consistent results were obtained showing that the phase transition of PNIPAM has some effect on the optical properties of Ag NPs. Switchable electrochemical response of the PNIPAM-stabilized Ag NPs triggered by temperature change was observed.  相似文献   

10.
In this communication, a novel one-pot synthetic strategy for preparing hollow PNIPAM microspheres via an interfacial polymerization approach at the interface of an inverse W/O emulsion has been proposed and demonstrated. The results show that the prepared PNIPAM microspheres have real empty core and polymer shell structure, with a size range of 1-3 mum. The hollow microspheres experienced a reversible swelling and deswelling process by mediating the temperature below and above the lower critical solution temperature (LCST) of the PNIPAM. The new approach not only provided a unique technical pathway to prepare hollow PNIPAM microspheres in situ under mild reaction conditions but also opened a platform for helping to understand the mechanism of diffusion, migration of the PNIPAM at an oil/water interface above its LCST, and the polymer layer formation mechanism as well.  相似文献   

11.
This paper describes the double phase transition behavior of a thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush at the surface of a hydrophobic core. Reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) was conducted by using a hyperbranched polyester (Boltorn H40) based macroRAFT agent. The resultant multiarm star block copolymer (H40-PNIPAM) exists as unimolecular micelles with hydrophobic H40 as the core, densely grafted PNIPAM brush as the shell. A combination of laser light scattering (LLS) and microdifferential scanning calorimetry (micro-DSC) studies of H40-PNIPAM in aqueous solution reveals double phase transitions of the PNIPAM corona, which is in contrast to the fact that free PNIPAM homopolymer in aqueous solution exhibits a lower critical solution temperature (LCST) at approximately 32 degrees C. The first phase transition takes place in the broad temperature range 20-30 degrees C, which can be tentatively ascribed to the n-cluster-induced collapse of the inner region of the PNIPAM brush close to the H40 core; the second phase transition occurs above 30 degrees C, which can be ascribed to the outer region of PNIPAM brush. Employing the RAFT chain extension technique, the inner and outer part of PNIPAM brush were then selectively labeled with pyrene derivatives, respectively; temperature-dependent excimer fluorescence measurements further support the conclusion that the inner part of PNIPAM brush collapses first at lower temperatures, followed by the collapse of the outer part at higher temperatures.  相似文献   

12.
Layer-by-layer assembled polyelectrolyte microcapsules are of great interest because they can possibly be used as microcontainers and they show interesting stimuli-responsive properties, which have been recently investigated. Here, we exploit capsules which are made temperature-sensitive by encapsulating poly(N-isopropylacrylamide) (PNIPAM). PNIPAM has a cloud point in water at about 32 degrees C, above which it collapses and is insoluble in water. Further this temperature responsiveness can be tuned by addition of various ions at various concentrations. Here, we present the encapsulation of PNIPAM inside polyelectrolyte microcapsules, and describe the dependence of the lower critical solution temperature (LCST) on the nature and the amount of different salts added. With this information, we demonstrate the ability to tune and finely control the collapse of encapsulated PNIPAM. In this light, this system could be used as a microsensor or drug- delivery system.  相似文献   

13.
A new kind of hollow hydrogel microfiber with discontinuous hollow structure was prepared by an ice-segregation-induced self-assembly process. Monodisperse thermo-responsive hollow poly(N-isopropylacrylamide)(PNIPAM) microgels were first synthesized by seed precipitation polymerization using colloidal Si O2 nanoparticles as seeds, followed by removing the silica cores of the formed Si O2/PNIPAM core/shell composite microgels with hydrofluoric acid. Then, the discontinuously hollow hydrogel microfibers were produced by unidirectional freezing of 1 wt% hollow PNIPAM microgel aqueous dispersion in liquid nitrogen bath, followed by freeze-drying to remove the formed ice crystals. Many orderly arrayed dents were observed on the surfaces of the hydrogel microfibers by field-emission scanning electron microscopy, indicating that they are constructed by closely packed monodisperse hollow PNIPAM microgels. The effect of freezing method and the hollow microgel concentration in the aqueous dispersion on the morphological structure of the hollow hydrogel microfibers was investigated.  相似文献   

14.
PNIPAM chain collapse depends on the molecular weight and grafting density   总被引:1,自引:0,他引:1  
This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.  相似文献   

15.
We present a comprehensive investigation of the volume transition in thermosensitive core-shell particles. The particles consist of a solid core of poly (styrene) (radius: 52 nm) onto which a network of crosslinked poly(N-isopropylacrylamide) (PNIPAM) is affixed. The degree of crosslinking of the PNIPAM shell effected by the crosslinker N,N -methylenebisacrylamide was varied between 1.25 and 5 mol%. Immersed in water, the shell of these particles is swollen at low temperatures. Raising the temperature above 32°C leads to a volume transition within the shell. Cryogenic transmission electron microscopy (Cryo-TEM) and dynamic light scattering (DLS) have been used to investigate the structure and swelling of the particles. The Cryo-TEM micrographs directly show inhomogeneities of the network. Moreover, a buckling of the shell from the core particle is evident. This buckling increases with decreasing degree of crosslinking. A comparison of the overall size of the particles determined by DLS and Cryo-TEM demonstrates that the hydrodynamic radius provides a valid measure for the size of the particles. The phase transition within the network measured by DLS can be described by the Flory–Rehner theory. It is shown that this model captures the main features of the volume transition within the core-shell particles including the dependence of the phase transition on the degree of crosslinking. All dispersions crystallize at volume fractions above 0.5. The resulting phase diagram is identical to the phase behavior of hard spheres within the limits of error. This demonstrates that the core-shell microgels can be treated as hard spheres up to volume fractions of at least 0.55.  相似文献   

16.
胡侠  肖光  潘炜  毛希琴  李鹏 《色谱》2010,28(6):590-595
建立了辣椒粉及辣椒油中7种罗丹明染料的高效液相色谱-串联质谱(HPLC-MS/MS)测定方法。样品经正己烷或甲醇-水(体积比为1:1)溶液提取后,经固相萃取(SPE)柱净化,采用SB-C18柱分离,以乙腈和水(含体积分数为0.1%的甲酸)为流动相进行梯度洗脱,采用正离子模式质谱检测,在多反应监测(MRM)模式下进行定性定量测定。7种罗丹明类染料在0.0005~1.0 mg/L质量浓度范围内线性关系良好,相关系数(r2)均大于0.997;方法的检出限分别为0.21~51 μg/kg(辣椒粉)和0.19~25 μg/kg(辣椒油);方法的回收率为85.0%~106.0%,日内及日间相对标准偏差均小于20%。该方法简单、灵敏度高、分析时间短,适用于辣椒粉和辣椒油中7种罗丹明染料的同时测定。  相似文献   

17.
 The temperature dependence of the dimensions of poly(N-isopropylacrylamide) (PNIPAM) adsorbed on two different colloidal silica particles was studied with dynamic light scattering. The hydrodynamic diameter was measured when the temperature was varied stepwise from 10 to 60 °C. PNIPAM molecules free in solution undergo a conformational transition at the θ temperature. We have found that PNIPAM adsorbed onto silica particles also undergoes a transition below the θ temperature. When a small amount of polymer was adsorbed the coil-to-globule transition at the θ temperature did not occur. Potentiometric titrations showed that the surface charge of the silica particles was not affected by the polymer adsorption. Sodium dodecyl sulfate (SDS) (100–1200 mg/l) was added to improve the stability. The particles with a higher zeta potential required a smaller addition of SDS to prevent coagulation compared to the particles with a smaller surface potential. For low additions of SDS the transition curves of adsorbed PNIPAM were unaffected. For larger additions of SDS the collapse of PNIPAM was shifted to higher temperatures. When as much as 1200 mg/l SDS was added, two regions with weak transitions were observed before the collapse. It was also observed that the presence of SDS results in a smaller adsorption of PNIPAM onto the particles. The addition of SDS strongly increased the magnitude of the electrophoretic mobility of the polymer–particle unit. From the electrophoretic measurements an electrokinetic layer thickness was calculated and it was found to be smaller than the corresponding hydrodynamic layer thickness, as obtained by dynamic light scattering. Received: 14 December 1999/In revised form: 22 February 2000/Accepted: 6 March 2000  相似文献   

18.
A new method, adopting inorganic clay (synthetic hectorite) as a physical cross-linker, was used to prepare poly(N-isopropylacrylamide) (PNIPAM) microgels via surfactant-free emulsion polymerization. The effect of hectorite content on the temperature-sensitivity of PNIPAM microgels was investigated by means of DLS, UV/Vis and DSC. It was found that, in the absence of surfactant, with increasing hectorite content, the particle size tends to decrease to 300 nm at room temperature, while increases as weight ratio (WR) of hectorite and N-isopropylacrylamide (NIPAM) exceeds 21%. Furthermore, with increasing WR from 7% to 21%, the volume phase transition temperature of PNIPAM microgels has little shift, while decreases slightly when WR increases up to 28%.  相似文献   

19.
The unusual aggregation behavior of poly(N-isopropylacrylamide)-based amphiphilic block copolymers was investigated by a combination of dynamic and static laser light scattering, AFM, and 1H NMR. The results revealed that PS-b-PNIPAM always forms large micelle aggregates in the transition process from an organic solvent to water due to the cononsolvency effect of PNIPAM. The cononsolvency effect of PNIPAM can be avoided to obtain classical micelles with PS29-b-PNIPAM27 in acetone-water at low temperatures (below 20 degrees C).  相似文献   

20.
Poly-N-isopropyl acryl amide (PNIPAM) is swollen in both pure water and pure methanol but collapses in mixtures of these solvents. In this review, this cononsolvency of PNIPAM in water/methanol mixtures is discussed. Experimental studies of linear PNIPAM chains and macrogels are compared to microgels. Theoretical studies are presented based on molecular dynamics simulation and quantum mechanical calculations as well as semi-empirical models. The different explanations for the cononsolvency available in the literature are introduced. Experiments show that all PNIPAM species collapse and re-swell at comparable methanol fraction in the mixture. Cross-linker density of macrogels and microgels has only slight influence on cononsolvency, whereas chain length of linear chains has a significant influence. Microgels provide advantages to study cononsolvency by en'abling a broader experimental approach. Furthermore, multi-sensitive microgels can be prepared, which contain compartments sensitive to different stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号