首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

2.
Spherical micelles of the diblock copolymer/surfactant Brij 700 (C(18)EO(100)) in water (D(2)O) solution have been investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS and SANS experiments are combined to obtain complementary information from the two different contrast conditions of the two techniques. Solutions in a concentration range from 0.25 to 10 wt % and at temperatures from 10 to 80 degrees C have been investigated. The data have been analyzed on absolute scale using a model based on Monte Carlo simulations, where the micelles have a spherical homogeneous core with a graded interface surrounded by a corona of self-avoiding, semiflexible interacting chains. SANS and SAXS data were fitted simultaneously, which allows one to obtain extensive quantitative information on the structure and profile of the core and corona, the chain interactions, and the concentration effects. The model describes the scattering data very well, when part of the EO chains are taken as a "background"contribution belonging to the solvent. The effect of this becomes non-negligible at polymer concentrations as low as 2 wt %, where overlap of the micellar coronas sets in. The results from the analysis on the micellar structure, interchain interactions, and structure factor effects are all consistent with a decrease in solvent quality of water for the PEO block as the theta temperature of PEO is approached.  相似文献   

3.
Temperature dependent phase behavior of poly(N-isopropylacylamide) (PNIPAM) microgels in water/methanol mixtures of different composition was studied with dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Using DLS, it is possible to measure the diffusion coefficient, and thus the size of particles exactly and directly; the variation of the phase transition temperature in the different solvents is also easy to detect by this method. With SANS measurements in D2O/MeOD mixtures, some of the DLS results were confirmed. Moreover, SANS measurements give valuable information on the particle structure in different solvents. The experiments were compared with the theory of competitive hydration introduced by Tanaka et al. We found a good agreement of theory and experiment, and obtained the theoretical predictions: around the transition temperature, the composition of the bound methanol along the chains is higher than that of the outer solution, while the whole methanol composition inside the gel is lower. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2013, 51, 1100–1111  相似文献   

4.
合成了3个系列各6类的偶氮苯衍生物1a~6a, 1b~6b和1c~6c. 凝胶性能测试结果表明, 这些化合物均能在多种极性或非极性有机溶剂中形成凝胶. 运用扫描电子显微镜和核磁共振波谱仪对代表性化合物4b形成的凝胶结构和成胶驱动力进行了分析. 化合物4a~4c形成的凝胶在紫外光和可见光照射下, 能够发生凝胶-溶胶的相互转化. 计算了溶剂和凝胶因子的梯氏参数, 利用梯氏三角图分析了凝胶测试结果, 发现凝胶因子在溶剂中的4种行为(溶液、 半凝胶、 凝胶和沉淀)分别分布在三角图的不同区域; 在凝胶区域, 溶剂与凝胶因子之间的距离反映了凝胶的热稳定性, 距离越远表示凝胶的热稳定性越好.  相似文献   

5.
The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.  相似文献   

6.
7.
Tb掺杂SiO2-B2O3-NaF玻璃的制备及发光性质   总被引:5,自引:0,他引:5  
使用正硅酸乙酯、硼酸和氟化钠为前驱体,0.10 mol•L-1TbCl3溶液为掺杂剂,通过溶胶-凝胶方法制备了Tb3+掺杂的SiO2-B2O3-NaF玻璃,研究了Tb3+在SiO2-B2O3-NaF体系中的发光性质,结果显示发光体能产生强的绿色发光(544 nm),归属于Tb3+的5D4—7F5电子跃迁.Tb3+含量不同时,除发光强度不同外,其发射光谱基本相同,并且在低掺杂Tb3+样品和低退火温度样品中检测到了来自5D3跃迁产生的峰,其跃迁随Tb3+掺杂浓度的增加和退火温度的升高而发生猝灭,这种现象归因于5D3-5D47F6—7F0和/或5D3—7F07F6—5D4跃迁中发生了交叉弛豫现象.Tb3+在SiO2-B2O3-NaF玻璃中的激发光谱由一个宽峰和一系列窄峰组成,宽峰最大波长位于230 nm,对应于Tb3+的4f 8—4f 75d 1跃迁,一系列窄峰位于300~380 nm处,归属于4f 8跃迁,所有发光材料的XRD和TEM测试显示材料是非晶态的.  相似文献   

8.
The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below T(ODT) (order-disorder transition temperature). Within the midblock flexibility range we studied (l(p)N(c)相似文献   

9.
Amphiphilic block copolymers are excellent dispersants for single-walled carbon nanotubes (SWCNT) in aqueous environments, where their noncovalent attachments do not affect the π chemical bonding. In this small-angle neutron scattering (SANS) study, we investigate whether the coverage of Pluronic F127 polymers around the CNTs depends on the solution concentration in the range of 1-6% (w/w). The observations indicate that at these concentrations the SWCNT surface is fully saturated at about 14 chains per unit length of 100 ?. Furthermore, we seek to verify whether the unusual effect observed in a previous study by contrast variation, interpreted as being due to a dense hydration layer around the polymer chains, also appears using a homopolymer (polyvinylpyrrolidone - PVP) that does not contain poly(ethylene oxide) (PEO) units. The SANS patterns showed again a minimal intensity value at much higher solvent composition (75% D(2)O) than the expected value of 29% D(2)O. The minimum scattering curve exhibited a nearly q(-1) power law at small angles, an indication of rodlike entities. A model of a CNT thin bundle with loosely adsorbed polymer chains around it (core-chains) was reasonably well fitted to the data. The polymer chains are assumed to be surrounded by a water layer with a slightly higher density than bulk water, having partial selectivity for D(2)O.  相似文献   

10.
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed. Furthermore, we employed the structure factor analysis to study the association of copolymer conformations and long-range order of the simulation system and found our results are in agreement with the previous experimental conclusions.  相似文献   

11.
Thermosensitive poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer, Pluronic F68, containing a hydrophobic unit, oligo-(lactic acid)(oligo-LA) or oligo-caprolactone (oligo-CL), 2-META and RGD as side groups was successfully synthesized and characterized by (1)H NMR, FTIR, and elemental analysis. Their aqueous solution displayed special gel-sol-gel phase transition behavior with increasing temperature from 10 to 70°C, when the polymer concentration was above critical micelle concentration (CMC). The gel-sol phase diagram was investigated using tube inversion method, rheological measurement, and dynamic light scattering. Based on these results, the gelation properties of modified F68 were affected by several factors such as the composition of the substituents, chain length of oligo L-LA or oligo ε-CL, and the concentration of the polymer solutions. The unique phase transition behavior with temperature was observed by modified F68 triblock copolymer, composed of the PPO blocks core and the PEO blocks shell in aqueous solution. This phenomenon was elucidated using (1)H NMR data; the alteration of hydrophobic interaction and chain mobility led to the formation of transparent gel, coexistence of gel-sol, and opaque gel. These hydrogels may be useful in drug delivery and tissue engineering.  相似文献   

12.
The role of nonionic vesicles on the rheological behavior of Pluronic F127 is investigated above the dilute regime and below the cloud point of the nonionic surfactant. F127 is a copolymer possessing sol-gel transition by heating attributed to a phase transition from micellar to cubic. The presence of surfactant vesicles is expected to enhance the compartmentalization of a variety of drugs, independently of their affinity to the solvent. Such entrapment would be suitable for controlled release of the drugs in different applications. We address here a mixed Pluronic-nonionic surfactant system with particular emphasis to the effects of the surfactant on the rheological properties of the Pluronics, and the correlation between these properties and drug release control. The results show that the rheological properties of the mixed system are mainly governed by the behavior of the polymer alone and that the mixed system can be useful to control the percutaneous permeation of a small drug, such as Diclofenac Sodium salt.  相似文献   

13.
A transition from hierarchical pore structures (macro- and meso-pores) to uniform mesopores in monolithic polymethylsilsesquioxane (PMSQ, CH(3)SiO(1.5)) gels has been investigated using a sol-gel system containing surfactant Pluronic F127. The precursor methyltrimethoxysilane (MTMS) undergoes an acid/base two-step reaction, in which hydrolysis and polycondensation proceed in acidic and basic aqueous media, respectively, as a one-pot reaction. Porous morphology is controlled by changing the concentration of F127. Sufficient concentrations of F127 inhibit the occurrence of micrometer-scale phase separation (spinodal decomposition) of hydrophobic PMSQ condensates and lead to well-defined mesoporous transparent aerogels with high specific pore volume as a result of the colloidal network formation in a large amount of solvent. Phase separation regulates well-defined macropores in the micrometer range on decreasing concentrations of F127. In the PMSQ-rich gelling domain formed by phase separation, the PMSQ colloidal network formation forms mesopores, leading to monolithic PMSQ gels with hierarchical macro- and meso-pore structures. Mesopores in these gels do not collapse on evaporative drying owing to the flexible networks and repulsive interactions of methyl groups in PMSQ.  相似文献   

14.
Redox-responsive gel-sol/sol-gel transition in aqueous PAA system containing Fe(III)-citrate complex was realized by switching the redox states of Fe(III)/F(II) ions conjugated with photoreduction and oxidation. This reversible transition can be indicated chromatically by the Fe(III) ions and repeated many times as long as there is sufficient citric acid.  相似文献   

15.
A combined Monte Carlo and quantum mechanical study was carried out to analyze the tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution. Second- and fourth-order M?ller-Plesset perturbation theory calculations indicate that in the gas phase thiol (Pym-SH) is more stable than the thione (Pym-NH) by ca. 8 kcal/mol. In aqueous solution, thermodynamic perturbation theory implemented on a Monte Carlo NpT simulation indicates that both the differential enthalpy and Gibbs free energy favor the thione form. The calculated differential enthalpy is DeltaH(SH)(-->)(NH)(solv) = -1.7 kcal/mol and the differential Gibbs free energy is DeltaG(SH)(-->)(NH)(solv) = -1.9 kcal/mol. Analysis is made of the contribution of the solute-solvent hydrogen bonds and it is noted that the SH group in the thiol and NH group in the thione tautomers act exclusively as a hydrogen bond donor in aqueous solution. The proton transfer reaction between the tautomeric forms was also investigated in the gas phase and in aqueous solution. Two distinct mechanisms were considered: a direct intramolecular transfer and a water-assisted mechanism. In the gas phase, the intramolecular transfer leads to a large energy barrier of 34.4 kcal/mol, passing through a three-center transition state. The proton transfer with the assistance of one water molecule decreases the energy barrier to 17.2 kcal/mol. In solution, these calculated activation barriers are, respectively, 32.0 and 14.8 kcal/mol. The solvent effect is found to be sizable but it is considerably more important as a participant in the water-assisted mechanism than the solvent field of the solute-solvent interaction. Finally, the calculated total Gibbs free energy is used to estimate the equilibrium constant.  相似文献   

16.
The phase separation mechanism in semidilute aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions is investigated with small-angle neutron scattering (SANS). The nature of the phase transition is probed in static SANS measurements and with time-dependent SANS measurements after a temperature jump. The observed critical exponents of the phase transition describing the temperature dependence of the Ornstein-Zernike amplitude and correlation length are smaller than values from mean-field theory. Time-dependent SANS measurements show that the specific surface decreases with increasing time after a temperature jump above the phase transition. Thus, the formation of additional hydrogen bonds in the collapsed state is a kinetic effect: A certain fraction of water remains as bound water in the system. Moreover, H-D exchange reactions observed in PNIPAM have to be taken into account.  相似文献   

17.
Many structural models for the stationary phase in reversed-phase liquid chromatography (RPLC) systems have been suggested from thermodynamic and spectroscopic measurements and theoretical considerations. To provide a molecular picture of chain conformation and solvent partitioning in a typical RPLC system, a particle-based Monte Carlo simulation study is undertaken for a dimethyl octadecyl (C(18)) bonded stationary phase on a model siliceous substrate in contact with mobile phases having different methanol/water concentrations. Following upon previous simulations for gas-liquid chromatography and liquid-liquid phase equilibria, the simulations are conducted using the configurational-bias Monte Carlo method in the Gibbs ensemble and the transferable potentials for phase equilibria force field. The simulations are performed for a chain surface density of 2.9 micromol/m(2), which is a typical bonded-phase coverage for mono-functional alkyl silanes. The solvent concentrations used here are pure water, approximately 33 and 67% mole fraction of methanol and pure methanol. The simulations show that the chain conformation depends only weakly on the solvent composition. Most chains are conformationally disordered and tilt away from the substrate normal. The interfacial width increases with increasing methanol content and, for mixtures, the solvent shows an enhancement of the methanol concentration in a 10 Angstrom region outside the Gibbs dividing surface. Residual surface silanol groups are found to provide hydrogen bonding sites that lead to the formation of substrate bound water and methanol clusters, including bridging clusters that penetrate from the solvent/chain interfacial region all the way to the silica surface.  相似文献   

18.
Compatibility of the polycarbonates of bisphenol A (PC) and tetramethyl bisphenol A (TMPC) was studied in glassy films cast from CH2Cl2 at room temperature, and above the glass-transition temperature. Blends with different compositions and of different molecular weights were analyzed by DSC and small-angle neutron scattering (SANS). Solution studies were made with light scattering and microscopy. Some of the blend films were two-phased when cast at room temperature, but all films were one-phased in equilibrium above the glass transition. The SANS data demonstrated that phase separation in the cast films was not caused by inherent incompatibility of PC and TMPC, but was induced by the solvent CH2Cl2. The effect is caused by a closed miscibility gap in the ternary solution system PC/TMPC/CH2Cl2.  相似文献   

19.
Although a lattice Monte Carlo method provides an effective, simple, and fast way to study thermodynamic properties of substitutional alloys, it cannot treat by itself the off-lattice effects, such as thermal vibrations and local distortions. Therefore, even if the interaction among atoms at lattice points is calculated accurately by means of first-principles calculations, the lattice Monte Carlo simulation overestimates the order-disorder phase transition temperature. In this paper, we treat this problem in the investigation of the FePt alloy, which has recently attracted considerable interest in its magnetic properties. We apply a simple version of the potential renormalization theory to determine the interaction among atoms, including partly the off-lattice effects by means of first-principles calculations. Then, we use the interaction to perform a lattice Monte Carlo simulation of the FePt alloy on a fcc lattice. From the results, we find that the transition temperature obtained after the present renormalization procedure becomes closer to the experimental value.  相似文献   

20.
Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号