首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The initial permeability disaccommodation in ferritesMn x Fe3xO4+ , 0·5x1, was studied in a temperature range around –200°C to +180°C. Four separate bands were found in the relaxation spectrum of these ferrites.
Mn x Fe3–x O4+
Mn x Fe3–x O4+ , 0,5x1, –200°C +180°C. .
  相似文献   

3.
Mössbauer and infrared studies were made on samples of the ferrite system Co1–xCdxFe2O4 x=0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. Mössbauer spectra were taken at room temperature. The spectra of the samples withx0.7 showed well defined Zeeman patterns and they have been analyzed with two components, one due to A-site Fe3+ ions, and the other due to B-site Fe3+ and Fe2+ ions. The pattern due to B-site appeared to be composite and an explanation is given. The spectra withx=0.9 and 1 showed only a quadrupole splitting. The effect of cadmium substitution on the various hyperfine interactions has been discussed and the cationic distribution has been deduced for all values ofx. Far infrared spectra of the ferrite samples in the range 200–700 cm–1 were reported. Four bands were observed: the high frequency bandv 1 is assigned to tetrahedral complexes, and the low frequency bandv 2 to octahedral complexes, a small bandv 3 is due to Co2+-O2– complexes andv 4 is assigned to the lattice vibration of the system. The splitting occurred in thev 1 andv 2 bands atx=0.9 and inv 2 atx=1, indicating the presence of Fe2+ ions in octahedral sites.  相似文献   

4.
The magnetism of the colossal magnetoresistance material FeCr2S4 was studied through substitution by nonmagnetic element Cd. With the increase of Cd content, the high-field magnetization measured at 5 K increases, demonstrating a ferromagnetic Cr–Cr interaction in CdCr2S4. As comparing with the anti-ferromagnetic material ZnCr2S4, it is deduced that the ferromagnetic interaction in CdCr2S4 is favored by its larger Cr–Cr distance. On the other hand, due to Cd substitution, the low-field magnetization irreversibility between zero-field-cooling and field-cooling magnetization weakens with the increase of Cd content and disappears at last when x = 1 in the Fe1?x Cd x Cr2S4 (0 ≤ x ≤ 1.0) system. By taking account of the single-ion anisotropy of the ferrous ion on the tetrahedral site, the picture of irreversible magnetic behavior induced by magnetic anisotropy is examined.  相似文献   

5.
The technology of producing highly disperse ferrite Zn x Fe3 ? x O4 (x = 0–0.5) powders has provided a high biochemical purity, a specified dispersion, and a required level of functional magnetic parameters. The average particle sizes indicating their belonging to the lower limit of the nanometer range have been determined by X-ray diffraction and electron microscopy. Based on the X-ray diffraction patterns, the crystal lattice parameters have been determined as functions of the zinc ion concentration. The magnetic measurements performed at 300 K have revealed an increase in the magnetization due to the substitution, as well as the existence of the size effect, namely, the superparamagnetic state of powder particles.  相似文献   

6.
This paper reports on a study of magnetic properties of ordered arrays of ?-In x Fe2 ? x O3 (x = 0.24) nanowires possessing a high room-temperature coercive force of 6 kOe. Lowering the temperature below 190 K brings about a sharp decrease of the coercive force and magnetization of nanowires driven by the magnetic phase transition from the ferrimagnetic into antiferromagnetic phase. The transition is accompanied by a decrease of the magnetic anisotropy constant, which accounts for the anomalous frequency dependence of the position of the maximum in the temperature dependence of dynamic magnetic susceptibility. In the low-temperature phase, a spin-flop transition in the magnetic field of 28 kOe has been observed at T = 2 K. Lines related to the high-temperature hard-magnetic and low-temperature phases have been identified in electron spin resonance spectra of the nanowires. A line lying near zero magnetic field and evolving from the nonresonant signal related to the microwave magnetoresistance of the sample has also been detected.  相似文献   

7.
8.
Recently, we have demonstrated the successful synthesis of Fe x Co1−x /Co y Fe3−y O4 nanocomposites with various alkaline solutions by using surfactants-assisted-hydrothermal (SAH) process. In this article, the synthesis of Fe x Co1−x /CoyFe3−y O4 nanocomposites with their sizes varying between 20 nm and 2 μm was reported. X-ray powder diffraction (XRD) analyses showed that the surfactants, pH, precipitator, and temperature of the system play important roles in the nucleation and growth processes. The magnetic properties tested by vibrating sample magnetometer (VSM) at room temperature exhibit ferromagnetic behavior of the nanocomposites. These Fe x Co1−x /Co y Fe3−y O4 nanocomposites may have a potential application as magnetic carriers for drug targeting because of their excellent soft-magnetic properties.  相似文献   

9.
By the electrospinning and calcination techniques, we have prepared uniform nanofibers of Co1−x Zn x Fe2O4 (0.0≤x≤0.5) ferrites with diameters of 110–130 nm. The Co1−x Zn x Fe2O4 nanofibers are single-phase spinels and the lattice constant with Zn content deviates from the Vegard’s law for these Co1−x Zn x Fe2O4 nanofibers. The Co1−x Zn x Fe2O4 nanocrystal grains by which are built nanofibers increase with calcination temperature. Variations of coercivity and saturation magnetization with calcination temperature can be explained in terms of the grain-size (D) effect. The coercivity (H c) of Co0.5Zn0.5Fe2O4 nanofibers varies as D 0.65 and basically follows the predicted D 2/3 dependence based on the random anisotropy model in a D range below the single-domain size around 40 nm. The saturation magnetization of Co1−x Zn x Fe2O4 nanofibers initially increases with increasing Zn content, reaches a maximum value at x=0.3 and then decreases with further increase of Zn content, while the coercivity exhibits a continuous reduction with the increase of Zn content.  相似文献   

10.
Conclusions It has been found that the character of the magnetic anisotropy changes markedly when the Co + Ge YIG films are doped with calcium. For the induced uniaxial and in-plane anisotropy we observe an increasing departure from the predictions based on the two-parameter model and for the cubic anisotropy the constantK 1 becomes dependent on the growth direction. As a source for the latter effect the octahedral or tetrahedral preference of Co ions depending on the growth direction may be considered. The measured linewidth proportional to frequency indicates the presence of a relaxation mechanism which is, probably, connected with octahedral Co3+ ions.The authors express their thanks to Dr. P. Görnert and M. Neviva for preparation of the LPE films and to Dr. P. Novák for valuable discussions.Dedicated to Jan Kaczér DrSc on the occasion of his 65th birthday.  相似文献   

11.
In this work we report the results of X-ray diffraction and Mössbauer spectroscopy for the systems Pr0.5Sr0.5Mn1???x Fe x O3 (with x?=?0.05, 0.10, 0.15, 0.20, 0.25, 0.30). XRD patterns indicated that all samples were single phase with slightly distorted orthorhombic symmetry. Room temperature Mössbauer spectra are all quadrupole split, indicating paramagnetic relaxation of the Fe moment for all values of Fe concentrations. The spectra are fitted with two doublet components associated with Fe3?+? ions in octahedral sites with different distortions. Mössbauer spectra recorded at liquid nitrogen temperature for this system also indicate paramagnetic relaxation of the Fe moments down to liquid nitrogen temperature (LNT). In these spectra a third quadrupole component with quadrupole splitting close to zero develops. This component is associated with the delocalization of the charge carriers and the consequent disappearance of lattice distortions produced by the polaronic effect at room temperature. The component with the high quadrupole splitting (0.81 to 1.07 mm/s) results from Jahn–Teller distortion as a consequence of charge ordering transition at low temperature.  相似文献   

12.
Mössbauer measurements in mixed spinel ferrite Gax Fe1–x Ni Cr O4 (0x0.8), carried out between 4.2 and 298°K, show the presence of entropic spins in this system. Recent Monte Carlo calculations /4/ have predicted the presence of such spins in a frustrated spin glass lattice.  相似文献   

13.
Physics of the Solid State - A systematic investigation of the structural transformations in La1 ? x Ba x Mn0.98 57Fe0.02O3 + δ (x = 0.05?0.20) at different Ba concentrations and...  相似文献   

14.
Dielectric properties of LaSrCo1−x Al x O4 (x=0, 0.1, 0.3, and 0.5) ceramics were investigated in a broad frequency and temperature range. The AC conductivity decreased with the increasing Al concentration. Dielectric constant increased at lower frequency and decreased at higher frequency when the Al concentration increased from 0.1 to 0.3, then it decreased at all frequencies as the x value was 0.5. While the dielectric loss decreased first and then increased with the increasing Al concentration. There was one dielectric relaxation in the curve of temperature dependence of dielectric properties of LaSrCo0.7Al0.3O4 ceramics. The nonadiabatic small polaronic hopping process should contribute to the dielectric relaxation in the present ceramics. The AC conductivity increased in about one order of magnitude after annealing the sample in the oxygen atmosphere, and this should be attributed to the appearance of interstitial oxygen in the annealed sample.  相似文献   

15.

The SeCu 1 m x Zn x O 3 solid solution, with a distorted perovskite-type structure, has been synthesized under high pressures and temperatures. X-ray diffraction analysis indicates that the zinc ions occupy the copper sites, a solid solution being formed. It seems that high-pressure stabilises a small cation such as Se 4+ in the A site of the perovskite structure ABO 3 although the material is better described as formed by selenite anions \rm{SeO}_{3}^{-} and Cu 2+ /Zn 2+ cations.  相似文献   

16.
17.
Mossbauer spectroscopy of 57Fe in both tetragonal and othorhombic phases of YBa2(FexCu1−x)3O7−δ, with x = 0.01, 0.02 and 0.10, at temperatures 4.2 K, 75 K, 90 K, and 300 K have been performed. In all samples three major subspectra corresponding to iron in different local environments are observed. It is concluded that Fe substitutes mainly Cul. At 4.2 K, samples with x=0.01 in the “quenched” tetragonal phase exhibit magnetic hyperfine structure, due to slow spin relaxation rates, whereas in the orthorhombic superconducting phase, only samples with x=0.1 exhibit magnetic hyperfine structure, in this case probably due to spin glass magnetic order.  相似文献   

18.
The structural and magnetic properties of Fe2 ? x Mg x CrO4 chromite synthesized by the ceramic method to receive analogs of natural minerals and to solve the rock magnetism problems are investigated. The dependences of cubic-lattice parameters and magnetic characteristics on composition, with slight deviation from linearity, are obtained. It is established in the course of experiments related to the partial thermal remanent magnetization in weak fields that some compositions are characterized by self-reversal under sample heating to 600°C in air. It is suggested that the self-reversal is caused by a nonuniform distribution of cations in chromite structure and phase transformation under oxidation.  相似文献   

19.
La2–x Ca x Cu0.99Fe0.01O4–y samples with 0.00 x 0.30 were studied by X-ray diffraction and Mössbauer spectroscopy after heat treatment under different atmospheres (air, oxygen and helium). The variation of the relative population and the hyperfine interactions of the sites as well as the change in the lattice parameters were obtained.On leave from National Center for Scientific Research, PO Box 6990, Havana, Cuba.  相似文献   

20.
The ferrites Mg0.9Mn0.1Cr x Fe2?x O4 ( The ferrites Mg0.9Mn0.1Cr x Fe2−x O4 () were prepared using the conventional double sintering method. The XRD showed that the samples maintain a single spinel cubic phase. The M?ssbauer measurements were carried out at room and liquid nitrogen temperatures. From the area ratios of the A and B sites, it was found that the Fe cation population of the A and B sites decreases in proportion to Cr concentration. The contact hyperfine fields at the A and B sites were found to decrease with increasing Cr contents. This was found to be in approximate agreement with the results of magnetization measurement. The distributions of Mg and Mn cations versus Cr concentration were also determined using the M?ssbauer and magnetization results. The Curie temperatures were determined and found to agree with the reported values. As the Cr contents increases the relative magnetization, was found to increase at low temperatures and decreases at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号