首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of inelastic constitutive equations is presented and discussed. In addition to the rate-of-strain tensor, the stress is assumed to depend also on the relative-rate-of-rotation tensor, a frame-indifferent quantity that brings information about the nature of the flow. The material functions predicted by these constitutive equations are given for simple shear and uniaxial extension. A special case of these equations takes the Newtonian form, except that the viscosity is a function of the invariants of both kinematic tensors on which the stress depends. This simple constitutive equation has potential applications in liquid flow process simulations, since it combines simplicity with the capability of responding independently to shear and extension, as real liquids seem to do. Finally, possible forms for the new viscosity function are discussed.  相似文献   

2.
A procedure for evaluating rheological characteristics, such as the master curves log/ 0 vs. log % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xd9Gqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaceWFZo% Gbaiaaaaa!3B59!\[\dot \gamma \] 0 and flow curves, using the melt flow index is described for branched and linear polymers. Experimental data on the melt flow index and branching degree are needed for this purpose, as well as some polymer constants, i.e. coefficients of the 0 vs. MFI relation and coefficients of fluidity dependence on molecular characteristics. An example is given for bisphenol A polycarbonate.  相似文献   

3.
We present simulations of branched polymer dynamics based on a sliplink network model, which also accounts for topological change around branch points, i.e., for branch-point diffusion. It is well-known that, with the exception of stars, branched polymers may show a peculiar rheological behavior due to the exceptionally slow relaxation of the backbone chains bridging branch points. Though Brownian simulations based on sliplinks are powerful tools to study the motion of polymers and to predict rheological properties, none of the existing methods can simulate the relaxation of the bridge chains. The reason for that is lack of a rule for network topology rearrangement around branch points, so that entanglements between bridge chains cannot be renewed. Therefore, we introduce in this paper one possible branch-point mobility rule into our primitive chain network model. For star polymers, diffusion coefficients were calculated and compared with experiments. For both star and H-shaped polymers, diffusion was simulated both with and without the new rule, and the effect on linear viscoelasticity was also determined in one case.  相似文献   

4.
Summary Stress development at the onset of steady shear flow and stress relaxation from steady state were measured in a stiffened Weissenberg Rheogoniometer over wide ranges of shear rate for three polystyrene solutions. Time dependent shear stress and first normal stress differenceN 1 were obtained from the torque and axial thrust. From extensive auxiliary tests we believe these data to be free of spurious effects associated with instrument compliance. The solutions have zero shear viscosities of 890, 3900 and 67 000 poise. Tests for consistency with strain rate constitutive models were made using thevan Es-Christensen relation and with relative strain models using theKearsley-Zapas relations. Substantial deviations were found in both cases. TheMarrucci model was also examined. As in theCarreau model B, the predicted start-up curves from theMarrucci model are in general qualitative accord with observations, but some systematic quantitative discrepancies remain.
Zusammenfassung Der Spannungsaufbau beim Anfahren einer stationären Scherströmung und die Spannungsrelaxation nach dem Anhalten derselben werden in einem steifer gemachten Weissenberg-Rheogoniometer für drei Polystyrol-Lösungen über einem weiten Schergeschwindigkeitsbereich gemessen. Die zeitabhängige Schubspannung und die erste NormalspannungsdifferenzN 1 werden aus dem Drehmoment und der Axialverschiebung bestimmt. Aus umfangreichen Nebenuntersuchungen kann man schließen, daß die Ergebnisse von Verfälschungen durch instrumentelle Effekte weitgehend frei sind. Die Lösungen haben Null-Viskositäten von 890, 3900 und 67000 Poise. Für eine Untersuchung der Verträglichkeit der Daten mit Stoffgesetzen vom strain rate-Typ wurde dievan Es-Christensen-Gleichung zugrundegelegt, für Stoffgesetze vom relative strain-Typ entsprechend dieKearsley-Zapas-Gleichung. In beiden Fällen wurden wesentliche Abweichungen gefunden. Ebenso wurde das Modell vonMarrucci geprüft. Ähnlich wie beimCarreau-Modell B sind die Voraussagen des Anlauf-Verhaltens durch dieses Modell durchgängig in qualitativer Übereinstimmung mit den Beobachtungen, aber einige systematische quantitative Unterschiede sind auch hier vorhanden.


With 15 figures and 1 table  相似文献   

5.
In situ X-ray scattering measurements of molecular orientation under shear are reported for two commercial thermotropic liquid crystalline polymers (TLCPs), Vectra A950® and Vectra B950®. Transient shear flow protocols (reversals, step changes, and flow cessation) are used to investigate the underlying director dynamics. Synchrotron X-ray scattering in conjunction with a high-speed area detector provides sufficient time resolution to limit the total time spent in the melt during testing, whereas a redesigned X-ray capable shear cell provides a more robust platform for working with TLCP melts at high temperatures. The transient orientation response upon flow inception or flow reversal does not provide definitive signatures of either tumbling or shear alignment. However, the observation of clear transient responses to step increases or step decreases in shear rate contrasts with expectations and experience with shear-aligning nematics and suggests that these polymers are of the tumbling class. Finally, these two polymers show opposite trends in orientation following flow cessation, which appears to correlate with the evolution of dynamic modulus during relaxation. Specifically, Vectra B shows an increase in orientation upon flow cessation, an observation that can only be rationalized by the assumption of tumbling dynamics in shear. Together with prior observations of commercial LCP melts in channel flows, these results suggest that this class of materials, as a rule, exhibits director tumbling.  相似文献   

6.
Some equivalence conditions are formulated for non-linear models of polymer melts and solutions that are analogous to known conditions for three-constant linear rheological equations. The resulting model is analysed in simple shear and elongational flows. The kinematics of finite elastoviscous strains is considered in an appendix.  相似文献   

7.
We study the shear problem for nematic polymers as modeled by the molecular kinetic theory of Doi (1981), focusing on the anomalous slow flow regime. We provide the kinetic phase diagram of monodomain (MD) attractors and phase transitions vs normalized nematic concentration (N) and weak normalized shear rate (Peclet number, Pe). We then overlay all rheological features typically reported in experiments: alignment properties, normal stress differences and shear stress. These features play a critical role in the synthesis between theory and experiment for nematic polymers (Larson 1999; Doi and Edwards 1986). MD type is routinely used for rheological shear characterization: cf., flow-aligning 5CB (Mather et al. 1996a), tumbling PBT (Srinivasarao and Berry 1991), and 8CB (Mather et al. 1996b), evidence for a wagging regime (Mewis et al. 1997), out-of-plane kayaking modes (Larson and Ottinger 1991), and evidence for chaotic major director dynamics (Bandyopadhyay et al. 2000). MD transitions correlate with sign changes in normal stresses (Larson and Ottinger 1991; Magda et al. 1991; Kiss and Porter 1978, 1980). Furthermore, structure formation in shear devices appears to be correlated with monodomain precursor dynamics (Tan and Berry 2003; Forest et al. 2002a). In this paper we combine seminal kinetic theory results (Kuzuu and Doi 1983, 1984; Larson 1990; Larson and Ottinger 1991; Faraoni et al. 1999; Grosso et al. 2001), symmetry observations (Forest et al. 2002b), and mesoscopic results on the fate of orientational degeneracy in weak shear (Forest and Wang 2003; Forest et al. 2003a), together with our resolved numerical simulations, to provide the kinetic flow-phase diagram of Doi theory in the weak shear regime, 0<Pe<1, for infinitely thin rods. We report the "birth" of key rheological features at the onset of flow: sign changes and local maxima and minima in normal stress differences (N1 and N2) associated with MD transitions. These results serve as the basis for continuation of the kinetic phase diagram to Pe>1 ; as the definitive benchmark for any mesoscopic or continuum model; and experimental data can be compared in order to determine accuracy and limitations of the Doi theory in weak shear.  相似文献   

8.
In this paper, a characteristic equation involving the stream function, already given by one of the authors in a previous work for classifying axisymmetric incompressible flows, is re-considered. Non-uniform nearly extensional flows are derived as particular solutions from this equation. Using experimental data in the literature for polymer solutions and melts, it is proved that particular solutions of the characteristic equation lead to kinematics very close to those encountered in the fiber-spinning process. The kinematic equations satisfactorily correlating the fiber-spinning data are used in order to determine the ability of constitutive equations to predict realistic stresses in the flow domain. The rheological parameters of the fluids, obtained from experiments, are used for computation of differential and integral constitutive equations in the spinning conditions. Comparisons with the stress response of adequate constitutive equations are given and discussed.Also affiliated to: Université Joseph Fourier Grenoble I and Institut National Polytechnique de Grenoble, Associé au CNRS (URA 1510)  相似文献   

9.
The highly nonlinear behaviors of rodlike polymers in nematic phase under shear flow are studied with Brownian dynamics simulation. The LebwohlLasher nematogen model is taken as the prototype of the simulation and the mean-field approximation is avoided. By considering the nearest-neighbor intermolecular interaction, the spatial orientational correlation is introduced and therefore the spatial inhomogeneity such as the multiple-domain effect can automatically be incorporated. The transient order parameters, birefringence axes, shear stresses and first normal stress differences are calculated. The important finding of this work is that the director wagging and damped oscillation share the same molecular origin as director tumbling. The only difference is that the system is split into micro-domains which tumble with different phase angles in the wagging and damped oscillation regimes. The tumbling of the director of the whole system is suppressed due to the spatial inhomogeneity of director fields and then the damped oscillation of macroscopic stresses becomes predominant. The negative first normal stress difference exists at moderate shear rates, where both elasticity and viscosity play important role. Our simulation results including some dimensionless scaling parameters find good agreement with experimental observations in literature.  相似文献   

10.
Using Brownian dynamics (BD) simulations of FENE bead-spring models, the dynamics of star-branched polymers in dilute solutions under extensional flow have been investigated. Studies on star polymers in transient extensional flow reveal that the initial transient stress response at low strains is governed by both the number of arms and the shortest arm. On the other hand, the steady-state behavior of star polymers in elongational flow is limited by the maximum effective “contour” length of the molecules. The distribution of arm extension and birefringence of the star-branched molecule are broader and the mean is shifted to lower values, when compared to equivalent linear systems. As a result, the degree of arm extension at steady-state decreases as the number of arms in the star increases. Both an analysis of individual ensembles in Brownian dynamics simulations and a study of a simple force balance indicate that the constraint imposed on the star arms by the central branch point and contributions from “asymmetric” arm arrangements give rise to overall less extended and oriented star-branched molecules with broader arm extension and birefringence distributions. The results obtained from stress-conformation hysteresis simulation indicate that less-stretched arms exhibit more retarded relaxation, as the number of arms increases in star-branched molecules. The effect of excluded volume (EV) interactions, incorporated through the Lennard–Jones potential, on the dynamics of star polymers in extensional flow appears unimportant.  相似文献   

11.
In this paper, we propose a numerical simulation of axisymmetric extensional experiments on a viscoelastic polydimethylsiloxane (PDMS) material, using a falling-weight extensional rheometer. The polymer behaviour is represented by a K-BKZ memory-integral constitutive equation, involving a damping function of the Wagner type. Under the assumption of a homogeneous flow zone in the sample, a numerical model is set up, using the stream-tube method and approximating functions. The governing equations of the problem, associated to a limited number of unknowns, are solved by means of the Levenberg-Marquardt optimization algorithm. The numerical results are found to be consistent with the experimental data and reveal the importance of the non-homogeneous flow zone, in relation to the estimation of the extensional strain rate. The calculations involve the sensitivity of the model on the fluid parameters and those concerning the size of the initial column of fluid. The limited computing (CPU) time of the code is also to be underlined.  相似文献   

12.
Effects of dilute polymer solutions on a lid-driven cubical cavity turbulent flow are studied via particle image velocimetry (PIV). This canonical flow is a combination of a bounded shear flow, driven at constant velocity and vortices that change their spatial distribution as a function of the lid velocity. From the two-dimensional PIV data we estimate the time averaged spatial fields of key turbulent quantities. We evaluate a component of the vorticity–velocity correlation, namely 〈ω3v〉, which shows much weaker correlation, along with the reduced correlation of the fluctuating velocity components, u and v. There are two contributions to the reduced turbulent kinetic energy production −〈u vSuv, namely the reduced Reynolds stresses, −〈u v〉, and strongly modified pointwise correlation of the Reynolds stress and the mean rate-of-strain field, Suv. The Reynolds stresses are shown to be affected because of the derivatives of the Reynolds stresses, u v〉/∂y that are strongly reduced in the same regions as the vorticity–velocity correlation. The results, combined with the existing evidence, support the phenomenological model of polymer effects propagating from the polymer scale to the velocity derivatives and through the mixed-type correlations and Reynolds stress derivatives up to the turbulent velocity fields. The effects are shown to be qualitatively similar in different flows regardless of forcing type, homogeneity or presence of liquid–solid boundaries.  相似文献   

13.
A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.  相似文献   

14.
The tensorial mechanical model of Farhoudi and Rey (1993) for uniaxial, rodlike, spatially homogeneous and monodomain nematics is modified to describe the microstructural response of discotic nematic network polymers in rectilinear simple shear flow. The particular topological features of the discotic phase are taken into account by a proper modification of the phenomenological parameters. Asymptotic and numerical solutions of the microstructural balance equations indicate the appearance of tumbling, oscillating, and stationary flow regimes as the strength of shear increases, as is the case for rod-like nematic polymers (Marrucci, 1991). The tumbling-oscillating transition is characterized by a diverging tumbling function , while the oscillating-stationary transition is characterized by a single steady value smaller than —1. The stable steady states of the stationary regime are shown to belong to the family of unstable isotropic solutions that exist at small shear rates, and are characterized by a director angle close to, but less than +90° to the flow direction.  相似文献   

15.
J. M. Dealy 《Rheologica Acta》1982,21(4-5):475-477
Present rheometrical techniques are inadequate for the measurement of viscoelastic properties associated with shearing at high rates. A possible solution to this problem is to use a sliding plate rheometer together with a device for measuring the local wall shear stress away from the ends and edges of the plates. Such a device has been constructed, and the results of preliminary tests are encouraging.  相似文献   

16.
The purpose of this paper is to extend the rheological predictions of the Doi-Hess kinetic theory for sheared nematic polymers from the anomalous weak shear regime (Forest et al. 2004a) to arbitrary shear rates, and to associate salient rheological and optical properties with the solution space of kinetic theory. Using numerical bifurcation software (AUTO), we provide the phase diagram of all stable monodomain orientational probability distribution functions (PDFs) and their phase transitions (bifurcations) vs nematic concentration (N) and normalized shear rate (Peclet number, Pe) for Pe1. Shear stresses, normal stress differences, the peak direction of the orientational distribution, and birefringence order parameters are calculated and illustrated for each type of PDF attractor: steady flow-aligning, both in and out of the flow deformation plane and along the vorticity axis; unsteady limit cycles, where the peak orientation direction rotates in-plane or around the vorticity axis or in bi-stable orbits tilted between them; and chaotic attractors first observed in kinetic simulations by Grosso et al. (2001). We pay particular attention to correlations between rheological features and the variety of monodomain phase transitions. Together with the weak flow regime, these results provide a nearly complete picture of the rheological consequences of the Doi-Hess kinetic theory for sheared monodomains of rigid, extreme aspect ratio, nematic rods or platelets.  相似文献   

17.
We present a differential constitutive model of stress relaxation in polydisperse linear polymer melts and solutions that contains contributions from reptation, contour-length fluctuations, and chain stretching. The predictions of the model during fast start-up and steady shear flows of polymer melts are in accord with experimental observations. Moreover, in accordance with reported experimental literature (Osaki et al. in J Polym Sci B Polym Phys 38:2043–2050, 2000), the model predicts, for a range of shear rates, two overshoots in shear stress during start-up of steady shear flows of bidisperse polymer melts having components with widely separated molar masses. Two overshoots result only when the stretch or Rouse relaxation time of the higher molar mass component is longer than the terminal relaxation time of the lower molar mass component. The “first overshoot” is the first to appear with increasing shear rate and occurs as a result of the stretching of longer chains. Transient stretching of the short chains is responsible for the early time second overshoot. The model predictions in steady and transitional extensional flows are also remarkable for both monodisperse and bidisperse polymer solutions. The computationally efficient differential model can be used to predict rheology of commercial polydisperse polymer melts and solutions.  相似文献   

18.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

19.
A charged dumbbell model is used to investigate the behavior of dilute polyelectrolyte solutions in a general linear two-dimensional flow. The model studied has a nonlinear spring, conformation dependent friction and a Coulombic repulsive force due to an effective electrostatic charge on the two beads. The relative importance of the electrostatic charge is reflected by an effective charge density parameter,E. Equilibrium properties such as end-to-end distance and intrinsic viscosity are strongly dependent onE. In strong flows, which produce a dramatic increase in the dumbbell dimensions (a coil-stretch transition), the onset behavior is influenced byE. IncreasingE causes the onset velocity gradient to shift to much lower values. Large values ofE change the qualitative behavior to that of rigid (or slightly extensible) macromolecules or fibers. Results are presented for a charged dumbbell at equilibrium, in steady flows, and in transient flows.  相似文献   

20.
Given a general one-particle constitutive equation for the stress tensor, we discuss how to incorporate the additional effects of polymer diffusivity and migration into that constitutive equation within the framework of continuum mechanics. For the example of an upper-convected Maxwell model representing the polymer contribution to the stress tensor of a dilute polymer solution, we describe i) how to modify the constitutive equation for the stress tensor to include diffusion and migration effects, ii) how to formulate a balance equation for the polymer mass density in order to describe the nonhomogeneous composition of the polymer solution resulting from migration, and iii) how to close the extended set of coupled equations by means of further constitutive equations for the migration velocity and the diffusion tensor. In order to guarantee the material objectivity for all equations, we formulate them in the body tensor formulation of continuum mechanics (and then translate them into Cartesian space). The proposed equations are compared to results of a recent kinetic-theory approach.Dedicated to Professor Arthur S. Lodge on the occasion of his 70th birthday and his retirement from the University of Wisconsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号