首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio density functional and molecular orbital calculations provide singlet and triplet electronic potential energy surfaces for the reactions of CF3CH2I+O(3P) leading to OI and HF eliminations, reactions which have been the subject of recent experimental studies. A barrier to OI formation occurs on the triplet potential energy surface; there is no reverse barrier to OI formation on the singlet pathway. Findings suggest that two competing pathways may form HF. One is an addition-insertion-elimination process involving insertion of O into the C-I bond. The alternate path involves OI elimination, addition of an O atom to CF3CH2, and subsequent HF elimination. The computed reactant pathways and energetics are discussed in relation to recent experiments.  相似文献   

2.
用二阶微扰理论研究了单重态亚烷基卡宾与甲醛发生的三种环加成反应的机理 ,采用MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根 据能量数据可以预言环加成反应(1)的a途径将是单重态亚烷基卡宾与甲醛环加成 反应的主要反应通道,该反应由两步组成:(I)亚烷基卡宾与甲醛生成了一富能 中间体(INT1a),是一无势垒的放热反应,(II)中间体异构化为产物亚烷基环 乙烷,其势垒为24.1 kJ·mol~(-1)(MP2/6-31G~*)。  相似文献   

3.
The unimolecular reactions of ammonia oxide H3NO, isomerization and dehydrogenation, are investigated by ab initio MO calculations with the 4-31G basis set. The geometries and energies of the reactant, transition states and products have been determined on the singlet potential energy surface. The reaction ergodography along the intrinsic reaction coordinate (IRC) for the two reactions have been performed. The vibrational frequency correlation diagram of the two reactions are analyzed along the IRC.  相似文献   

4.
单重态二溴卡宾和甲醛环加成反应的量化研究   总被引:4,自引:0,他引:4  
采用量子化学密度泛函理论,研究了单重态二溴卡宾和甲醛环加成反应的机理.在B3LYP/6-31G*基组水平上,优化得到了反应途径上反应物、过渡态、中间体和产物的几何构型;计算并考察了四种可能反应途径势能面上各驻点的构型参数、振动频率和能量;通过振动分析对过渡态和中间体构型进行了确认.计算结果表明,二溴卡宾和甲醛反应有四条反应通道,其中c反应通道(即0°-0°型)控制步骤的活化能仅为13.7 kJ·mol-1,反应容易进行.  相似文献   

5.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

6.
An extensive quantum chemical study of the potential energy surfaces (PES) for the association reaction of NH2 with CN and the subsequent isomerization and dissociation reactions has been carried out using density functional theory (DFT)/B3LYP/6‐311++G(3df,2p) level of theory on both singlet and triplet states. The reaction mechanism on the triplet surface is more complicated than that on the singlet surface. A total of 19 isomers and 46 transition states have been identified and characterized on the triplet PES. Among them, IM2 (IM2a), IM3 (IM3a, IM3b), and IM10 are the lowest‐lying isomers with thermodynamic stability. Twenty available dissociation channels, depending on the different initial isomers, have been identified. On the singlet surface, only 12 isomers and 16 transition states have been found, and among them IM1(S) and IM2(S) are the lowest‐lying isomers. The higher isomerization and dissociation barriers on the singlet surface indicate that the addition and the subsequent reactions of NH2+CN are most likely to occur on the triplet PES because of the lower barriers. A prediction can be made for the possible mechanism explaining the production of H+HNCN. Besides HNCN, other major products are NH+HCN and NH+HNC, which are produced by direct dissociation reactions from triplet IM2 and IM3, respectively. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
亚烷基卡宾与丙烯环加成反应机理的理论研究   总被引:2,自引:0,他引:2  
卢秀慧  武卫荣 《化学学报》2003,61(11):1707-1713
用二阶微扰理论研究了单重态亚烷基卡宾与丙烯环加成反应的机理,采用 MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根据所得 势能面上的能量数据可以预言,反应(1)的a途径和反应(2)的b途径将是单重态 亚烷基卡宾与丙烯环加成反应的两条相互竞争的主反应通道,两反应途径均由两步 组成,(I)两反应物分别生成了富能中间体INT1a和INT2b,它们均是无势垒的放热 反应,放出的能量分别为60.28和26.33kJ·mol~(-1).(II)中间体INT1a和INT2b分 别通过过渡态TS1a和TS2b异构化为三元环产物P1和四元环产物P2,其势垒分别为 16.43和12.73kJ·mol~(-1)。  相似文献   

8.
Global, three-dimensional multireference ab initio potential energy surfaces have been calculated for the AlH2+ system for the two lowest energy singlet states and the lowest energy triplet state. These surfaces were calculated using the multireference configuration interaction level of theory with a large basis set. The accuracy of the surfaces were checked against available experimental data and previous theoretical investigations. The areas of surface crossings between the ground state singlet surface and the lowest energy triplet surface and the first excited singlet surface have been thoroughly investigated in all three dimensions and found to give rise to two regions of surface crossings--an "early" crossing (reduced H2 distance) and a "late" crossing (enlarged H2 distance). It is anticipated that both of these crossings will be important in modeling the dynamics of the system. Each of the global potential energy surfaces were fit by interpolation methodology to obtain analytic representations of the surfaces. A representative classical simulation on the ground state singlet surface was performed and discussed.  相似文献   

9.
IntroductionSmallclusterscontainingcarbonandsulfur,suchasCS ,C2 SandC3 S ,whichpossesslargepermanentdipolemomentsandhavebeenidentifiedinthecarbonstarIRC+ 10°2 16andintheTauruscoldmoleculardensecloudTMC 1,1 7haveattractedmuchattentionbecauseoftheirimportantroles…  相似文献   

10.
The potential energy surface (PES) of CH3SO radical with NO reaction has been studied at MP2/6-311G(2df, p) and QCISD/6-311G(2df, p) levels. Geometries of the reactants, transition states (TS) and products were optimized at B3LYP/6-311G (d,p) level. The geometries of the transition states were found for the first time. The calculated results show that the reaction can proceed via singlet-state or triplet-state PES. Because of the high energy barrier of triplet surface, the singlet surface reactions are dominant. The topological analysis of electron density shows that there are two kinds of structaral transition states (the bifurcation-type ring structure transition state and the T-shaped conflict structure transition state) in the titled reaction. The total electronic density of the reactants, TS and products and the spin electronic density on the triplet surface were also discussed in this paper.  相似文献   

11.
The cycloaddition mechanism of forming a polycyclic compound between singlet dimethylmethylene carbene(R1) and formaldehyde(R2) has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction between singlet dimethylmethylene carbene and formaldehyde consists of two steps: (1) the two reactants(R1, R2) firstly form an energy‐enricheded intermediate (INT1a) through a barrier‐free exothermic reaction of ΔE = 11.3 kJ/mol. (2) Intermediate (INT1a) then isomerizes to a three‐membered product (P1) via a transition state (TS1a) with an energy barrier of 20.0 kJ/mol. The dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in reaction rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

12.
The reactions dynamics of the dicarbon molecule C2 in the 1Sigma (g)+ singlet ground state and 3Pi(u) first excited triplet state with allene, H2CCCH2(X1A1), was investigated under single collision conditions using the crossed molecular beam approach at four collision energies between 13.6 and 49.4 kJ mol(-1). The experiments were combined with ab initio electronic structure calculations of the relevant stationary points on the singlet and triplet potential energy surfaces. Our investigations imply that the reactions are barrier-less and indirect on both the singlet and the triplet surfaces and proceed through bound C5H4 intermediates via addition of the dicarbon molecule to the carbon-carbon double bond (singlet surface) and to the terminal as well as central carbon atoms of the allene molecule (triplet surface). The initial collision complexes isomerize to form triplet and singlet pentatetraene intermediates (H2CCCCCH2) that decompose via atomic hydrogen loss to yield the 2,4-pentadiynyl-1 radical, HCCCCCH2(X2B1). These channels result in symmetric center-of-mass angular distributions. On the triplet surface, a second channel involves the existence of a nonsymmetric reaction intermediate (HCCCH2CCH) that fragments through atomic hydrogen emission to the 1,4-pentadiynyl-3 radical [C5H3(X2B1)HCCCHCCH]; this pathway was found to account for the backward scattered center-of-mass angular distributions at higher collision energies. The identification of two resonance-stabilized free C5H3 radicals (i.e., 2,4-pentadiynyl-1 and 1,4-pentadiynyl-3) suggests that these molecules can be important transient species in combustion flames and in the chemical evolution of the interstellar medium.  相似文献   

13.
The mechanism of the cycloadditional reaction between singlet dichloro-germylidene(R1) and (acetaldehyde(R2) has been investigated with MP2/6-31G* method, including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and acetaldehyde has two competitive dominant reaction pathways. Going with the formation of two side products (INT3 and INT4), simultaneously. The two competitive reactions both consist of two steps: (1) two reactants firstly form a three-membered ring intermediate (INT1) and a twisted four-membered ring intermediate (INT2), respectively, both of which are barrier-free exothermic reactions of 44.5 and 63.0 kJ/mol; (2) then INT1 and INT2 further isomerize to a four-membered ring product (P1) and a chlorine-transfer product (P2) via transitions (TS1 and TS2), respectively, with the barriers of 9.3 and 1.0 kJ/mol; simultaneously, P1 and INT2 react further with acetaldehyde(R2) to give two side products (INT3 and INT4), respectively, which are also barrier-free exothermic reaction of 65.4 and 102.7 kJ/mol.  相似文献   

14.
The reaction of HO2 with C2H5O2 has been studied using the density functional theory (B3LYP) and the coupled-cluster theory [CCSD(T)]. The reaction proceeds on the triplet potential energy surface via hydrogen abstraction to form ethyl hydroperoxide and oxygen. On the singlet potential energy surface, the addition-elimination mechanism is revealed. Variational transition state theory is used to calculate the temperature-dependent rate constants in the range 200-1000 K. At low temperatures (e.g., below 300 K), the reaction takes place predominantly on the triplet surface. The calculated low-temperature rate constants are in good agreement with the experimental data. As the temperature increases, the singlet reaction mechanism plays more and more important role, with the formation of OH radical predominantly. The isotope effect of the reaction (DO2 + C2D5O2 vs HO2 + C2H5O2) is negligible. In addition, the triplet abstraction energetic routes for the reactions of HO2 with 11 alkylperoxy radicals (CnHmO2) are studied. It is shown that the room-temperature rate constants have good linear correlation with the activation energies for the hydrogen abstraction.  相似文献   

15.
Mechanism of the cycloadditional reaction between singlet dichloro-germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry opti-mization, vibrational analysis and energies for the involved stationary points on the poten-tial energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and formaldehyde has two competitive dom-inant reaction pathways, going with the formation of two side products (INT3 and INT4), simultaneously. Both of the two competitive reactions consist of two steps, two reactants firstly form a three-membered ring intermediate INT1 and a twisted four-membered ring intermediate INT2, respectively, both of which are barrier-free exothermic reactions of 41.5 and 72.3 kJ/mol; then INT1 isomerizes to a four-membered ring product P1 via transition state TS1, and INT2 isomerizes to a chlorine-transfer product P2 via transition state TS2,with the barriers of 2.9 and 0.3 kJ/mol, respectively. Simultaneously, P1 and INT2 further react with formaldehyde to form INT3 and INT4, respectively, which are also barrier-free exothermic reaction of 74.9 and 88.1 kJ/mol.  相似文献   

16.
By creating two triplet excitons from one photo‐excited singlet exciton, singlet fission in organic semiconductors has drawn tremendous attention for its potential applications in boosting the efficiency of solar conversion. Here, we show that this carrier‐multiplication effect can also be used to dramatically improve the nonlinear optical response in organic materials. We have observed large optical nonlinearity with a magnitude of χ(3) up to 10?9 esu in pentacene films, which is further shown to be a result of singlet fission by monitoring the temporal dynamics. The potential application of such efficient nonlinear optical response has been demonstrated with a singlet‐fission‐induced polarization rotation.  相似文献   

17.
The singlet and triplet potential energy surfaces involved in N++SH2 reactions have been explored using high‐level ab initio techniques. The geometries of the stationary points were optimized at the QCISD/6‐311G(df,p) level. The final energies were obtained in CCSD(T)/6‐311+G(3df,2p) single‐point calculations. The results obtained show that, although the N+(1D)+SH2 entrance channel is higher in energy than the N+(3P)+SH2 one, most of the [H2, S, N]+ singlet state cations are lower in energy than the corresponding triplets, due to their different bonding characteristics. Both singlet and triplet potential energy surfaces are quite close each other, and crossover between them can occur. The minimum energy crossing points were located by means of CASSCF(6,5) calculations. The spin‐orbit couplings show that the transition probability from the triplet to the singlet potential energy surface is significantly large. One of the most important consequences is that some of the products of the reaction, such as SH+, can be formed in typical spin‐forbidden processes. Since all the relevant structures along these pathways are much lower in energy than the reactants, this mechanism should be accessible even at low impact energies and therefore could be important in processes taking place in interstellar media. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

18.
We report a crossed beam study of the title reactions in the collision energy range from 0.45 to 1.23 eV (43–119 kJ/mol). Both reactions are exoergic and proceed as direct processes on a time scale much less than the rotational period of the transient association complex of approaching reactants. The charge transfer process takes place with zero momentum transfer. Density Functional Theory calculations of the structures of reactive intermediates show that a plausible pathway for hydride transfer involves initial charge transfer on a triplet surface, followed by intersystem crossing to the singlet manifold. This process is followed by rapid hydrogen atom transfer to form an intermediate that dissociates smoothly to products. The kinematics of the heavy + light-heavy mass combination result in mixed energy release at the lowest collision energy, in which both the breaking and forming bonds are extended, while at higher collision energies, the incremental translational energy in the reactants appears preferentially in product translation, consistent with induced repulsive energy release.  相似文献   

19.
The kinetics and mechanism of the gas-phase reactions between hydroxy methyl radical (CH(2)OH) or methoxy radical (CH(3)O) with hydroproxy radical (HO(2)) have been theoretically investigated on their lowest singlet and triplet surfaces. Our investigations indicate the presence of one deep potential well on the singlet surface of each of these systems that play crucial roles on their kinetics. We have shown that the major products of CH(2)OH + HO(2) system are HCOOH, H(2)O, H(2)O(2), and CH(2)O and for CH(3)O + HO(2) system are CH(3)OH and O(2). Multichannel RRKM-TST calculations have been carried out to calculate the individual rate constants for those channels proceed through the formation of activated adducts on the singlet surfaces. The rate constants for direct hydrogen abstraction reactions on the singlet and triplet surfaces were calculated by means of direct-dynamics canonical variational transition-state theory with small curvature approximation for the tunneling.  相似文献   

20.
The radical-molecule reaction mechanisms of CH2Br and CHBrCl with NO2 have been explored theoretically at the UB3LYP/6-311G(d, p) level. The single-point energies were calculated using UCCSD(T) and UQCISD(T) methods. The results show that the title reactions are more favorable on the singlet potential energy surface than on the triplet one. For the singlet potential energy surface of CH2Br + NO2 reaction, the association of CH2Br with NO2 is found to be a barrierless carbon-to-oxygen attack forming the adduct IM1 (H2BrCONO-trans), which can isomerize to IM2 (H2BrCNO2), and IM3 (H2BrCONO-cis), respectively. The most feasible pathway is the 1, 3-Br shift with C–Br and O–N bonds cleavage along with the N–Br bond formation of IM1 lead to the product P1 (CH2O + BrNO) which can further dissociate to give P4 (CH2O + Br + NO). The competitive pathway is the 1, 3-H-shift associated with O–N bond rupture of IM1 to form P2 (CHBrO + HNO). For the singlet potential energy surface of CHBrCl + NO2 reaction, there are three important reaction pathways, all of which may have comparable contribution to the reaction of CHBrCl with NO2. The theoretically obtained major products CH2O and CHClO for CH2Br + NO2 and CHBrCl + NO2 reactions, respectively, are in good agreement with the kinetic detection in experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号