One micrometre silica particles, derivatized with C18, were electrokinetically packed into a 75-microm-i.d. capillary. The resulting column was evaluated for the separation of trimethoprim (TMP) and its impurities using pressurized capillary electrochromatography (pCEC), starting from a capillary liquid chromatographic (CLC) separation. These samples require gradient elution when separated by high performance liquid chromatography (HPLC), but with the new columns isocratic elution suffices for their separation by CLC or pCEC. Only 70,000 theoretical plates/m for impurity C were achieved using CLC mode at relative low pressure (78 bar) although very small particles were utilized. When a voltage above 2 kV (50 V/cm) was applied, unknown peaks appeared, which was assumed due to an electrophoretic effect with the unknown peaks resolving as a result of the applied voltage. In order to minimize these unfavorable contributions, only a low voltage was applied, still leading to higher separation performances and shorter separation times than in CLC. The optimal analyzing conditions in pCEC included a pressure of 78 bar, an applied voltage of 1 kV, and a mobile phase consisting of 80 mM sodium perchlorate (pH 3.1)/methanol (60/40, v/v). These conditions were used to separate and quantify four major impurities in TMP within 22 min. The obtained calibration curves were linear (r>0.9980) in concentration ranges between 0.005 and 0.1 mg/mL for impurities A and C; 0.02 and 0.10 mg/mL for impurity F; and 0.01 and 0.10 mg/mL for impurity H. The detection limits (S/N=3) for impurities A, C, F, and H were 0.52, 0.84, 3.18, and 2.41 microg/mL, respectively. The calibration curves were successfully applied to analyze spiked bulk samples, with mean recoveries ranging from 92% to 110%. The developed method can therefore be considered simple, rapid, and repeatable. 相似文献
The use of capillary electrochromatography as a chiral separation technique for pharmaceutical applications is reviewed. Publications of the past 10 years that provide a potential practical application in pharmaceutical analysis are considered. Method development or validation, separation strategies, and potential routine analysis by the methods/applications cited are the main subjects on which we focused our attention. The indirect chiral separation method was only used once in CEC mode. In the direct chiral separations, the use of chiral stationary phases was obviously preferred over the use of chiral mobile phases with non-chiral stationary phases. Amongst the chiral stationary phases, those based on macrocyclic antibiotics and polysaccharide selectors were the most frequently used. Monolithic stationary phases also have several applications, but not so extended as those with packed capillary electrochromatography. The considered papers not only describe the applicability of the technique for relatively large sets of chiral analytes, they also showed that various types of stationary phases can be produced in-house in a simple manner. However, to survive as a mature separation technique, considerable time and effort are still needed to solve some disadvantages currently characterizing capillary electrochromatography. 相似文献
Fritless particle-loaded monoliths for chiral capillary electrochromatographic (CEC) separation were prepared. Silica particles containing a chiral selector are suspended in a monomer solution, which is drawn into the capillary followed by in situ polymerization. Thereby the silica-based particles containing the chiral selector are embedded in a nonchiral continuous bed. This kind of chiral stationary phase is inexpensive, easy, and reproducible to prepare and circumvents the preparation of frits. As a model, teicoplanin aglycone as chiral selector bonded to 3 microm silica particles was used. The applicability of this approach is demonstrated by means of the chiral separation of aliphatic and aromatic amino acids and dipeptides. As a further application, the chiral selector ristocetin A bonded to 3 microm silica particles was used for the enantiomeric separation of chiral alpha-hydroxy acids. Since alpha-hydroxy acids migrate toward the anode, a cationic charge-providing agent was copolymerized with the matrix. This served to reverse the direction of the electroosmatic flow (EOF). 相似文献
In capillary electrochromatography (CEC), magnetic particles (MPs) were packed in a fused silica capillary by using the magnetic field to be retained without frits. For a chiral CEC separation, avidin was immobilized onto the surface of the MPs (AVI-MPs) as a stationary phase by using the physical adsorption technique. The injected AVI-MPs into the capillary were stably captured with the magnet (surface magnetic flux density, 250 mT) under the separation voltage of 10 kV (190 V/cm). By employing the fritless AVI-MPs packed capillary, the chiral separation of ketoprofen was successfully attained with the packing length of only 5 cm. Effects of the modification condition of avidin, pH of background solution, and the packing length on the enantioseparation were also investigated. Under the optimal condition, furthermore, the repeatability for the retention time of ketoprofen was better than 1.5% in the relative standard deviation and the capillary-to-capillary reproducibility was also acceptable in the prepared fritless capillaries. 相似文献
Summary A chiral capillary electrochromatographic (CEC) method for determination of the enantiomeric purity of either enantiomer of
metoprolol has been validated. High resolution and efficiency separations (Rs=2.5 and 80000 plates m−1, respectively) were achieved by use of a teicoplanin chiral stationary phase in the polar organic mode. Method validation
showed that detection linearity, robustness, accuracy, and repeatability were adequate. The method was also shown to be sufficiently
sensitive for the determination of a minor enantiomer; the limit of quantitation (LOQ) was determined to be 0.09% of the peak area of the enantiomer under investigation. A similar commercial column was subsequently
evaluated by use of the validated method and found to yield results for metoprolol comparable with those obtained on the homepacked
columns. Acceptable separations on this commercial column were also obtained for other β-blocking drugs; those for alprenolol
were particularly noteworthy (RS=3.8 and 265000 plates m−1). 相似文献
Summary Columns for capillary electrochromatography may be prepared by packing reversed phase silica-based material using a supercritical fluid carbon dioxide carrier. Procedures for the in-situ manufacture of frits and UV detection windows, and the wetting of columns are described. The columns were employed in two commercial instruments (and a home-built system), and their properties investigated during the separation of standard mixtures of test compounds. The columns are highly efficient and durable, with reduced plate heights of 1.0–1.4. The repeatability of retention time, peak area and peak height was measured. The influence of applied voltage and column temperature and of electrokinetic injection parameters was explored, along with other practical considerations. 相似文献
The use of molecularly imprinted polymers polymerized in a capillary for the separation of amino acid enantiomers by electrochromatography
is described. The substrate-selective polymers were prepared by using l-phenylalanine anilide as print molecule and methacrylic acid as the functional monomer. The treatment of the inside surface
of the capillary, the composition of the polymer and the electrochromatographic running conditions were investigated. This
preliminary report demonstrated a novel and simple method for capillary electrochromatographic separations of amino acid enantiomers
using molecularly imprinted polymers.
Received: 9 April 1996 / Revised: 8 August 1996 / Accepted: 8 August 1996 相似文献
A macrocyclic polyamine, 1,5,9,13,17,21,25,29-octaazacyclodotriacontane ([32]ane-N(8)), in the bonded phase was employed as a molecular receptor for CEC separation of oligopeptides. Parameters affecting the performance of the separations were considered. Baseline separation for the mixture of angiotensin I, angiotensin II, [Sar(1), Thr(8)]-angiotensin II, beta-casomorphin bovine, beta-casomorphin human, oxytocin acetate, tocinoic acid, vasopressin, and FMRF amide could be achieved using phosphate buffer (30 mM, pH 7) as the mobile phase. Column efficiency with average theoretical plate numbers of 69 000 plates/m and RSDs of <1% (n = 6) was achieved. [Met(5)]-enkephalin and [Leu(5)]-enkephalin, which have identical pI values and similar masses could be completely separated using acetate buffer (30 mM) with pH gradient (pH 3 inlet side and pH 4 outlet side). The results suggest that the mechanism for the peptide separation was mediated by a combination of electrophoretic migration and chromatographic retention involving anion coordination and anion exchange. After long-term use, the deviation of the EOF of the column after more than 600 injections was still within 6.0% of that for a freshly prepared column. 相似文献
The capillary electrochromatographic separations of three acidic enantiomers (carprofen, coumachlor and warfarin) were studied on a capillary column packed with 5 microm (3R,4S)-Whelk-O 1 chiral stationary phase. The influence of several experimental parameters (mobile phase pH, type of background electrolyte, acetonitrile ratio, temperature, applied voltage and ionic strength) on electroosmotic flow velocity, retention factor, selectivity factor, efficiency, resolution and effectiveness of chiral separation was evaluated. It was notable that the optimum resolution of the acidic enantiomers was achieved at pH 3.0 phosphate buffer, suggesting that capillary electrochromatography in the ion-suppressed mode can be applied for chiral separations of a range of acidic compounds. 相似文献
In this paper we report that Cu(II) complexes with L-amino acid amides were used as chiral selectors for enantioseparation by capillary electrophoresis, capillary electrochromatography (CEC) and micro liquid chromatography using chemically modified monolithic columns. The enantioselectivity, enantiomer migration order, and the performance have been compared when different chiral selectors were used in these modes. L-Enantiomers showed longer retention times than D-forms in both CEC and LC modes. However, it has interestingly been observed that the migration order of Dns-DL-Ser showed an exception in CEC using L-prolinamide-modified column that Dns-L-Ser was eluted as the first peak. On the basis of proposed structures of complexes in the chiral recognition, differences in migration orders and recognition mechanism were discussed. 相似文献
Summary Plastic tubing of polyetheretherketone (PEEK) is used for the preparation of HPLC packed capillary columns. The polymer is
rigid but not fragile, has great resistance to chemical and physical agents and comes in standard 1/16″ O.D. These features
can extend the column lifetime and facilitate the overall employment of HPLC capillary columns. Serial connection of short
columns is also possible with no increase in dead volume. A new, rapid and effective packing method has been developed to
be compatible with the characteristics of the material. Several C8 and C18 columns have been prepared and tested and some
applications are shown. 相似文献
DNA oligonucleotides that form G-quartet structures were used as stationary phase reagents for separation of bovine milk proteins, including alpha-casein, beta-casein, kappa-casein, alpha-lactalbumin and beta-lactoglobulin. Both artificial protein mixtures and a skim milk sample were analyzed. The separations were performed using open-tubular capillary electrochromatography, in which the oligonucleotides were covalently attached to the inner surface of a fused-silica capillary. Better resolution was achieved using the G-quartet-coated capillaries than was achieved using either a bare capillary or a capillary coated with an oligonucleotide that does not form a G-quartet structure. A 4-plane G-quartet-forming stationary phase was able to resolve three peaks for alpha-casein and to detect thermal denaturation of the proteins in the milk sample. The results suggest that G-quartet stationary phases could be used to separate very similar protein structures, such as those arising from genetic variations or post-translational modifications. 相似文献
Positively charged chiral stationary phases (CSPs) were prepared for capillary electrochromatography (CEC) separation of enantiomers by chemically immobilizing cellulose derivatives onto diethylenetriaminopropylated silica (DEAPS) with tolylene-2,4-diisocyanate (TDI) as a spacer reagent. Anodic electroosmotic mobility was observed in both nonaqueous and aqueous mobile phases due to the positively charged amines on the surface of the prepared CSPs. For comparison, the traditionally used 3-aminopropyl silica (APS) was also adopted as the base material instead of DEAPS to prepare CSP. It was observed that the EOF on the DEAPS-based CSP was 18%-60% higher than that on the APS-based CSP under nonaqueous mobile phase conditions. Separation of enantiomers in CEC was performed on the positively charged CSPs with the nonaqueous mobile phases of pure ethanol or mixture of hexane-alcohol and the aqueous phases of acetonitrile-water or 95% ethanol. Fast separation of enantiomers was achieved on the newly prepared CSPs. 相似文献
Strategies for simultaneous enantioseparations of three catecholamines (DL-norepinephrine, DL-epinephrine, and DL-isoproterenol) and three structurally related compounds (DL-octopamine, DL-synephrine, and DL-norephedrine) by CZE using sulfated beta-CDs as chiral selectors were investigated. Four different separation modes were attempted: (I) using randomly sulfate-substituted beta-CD (MI-S-beta-CD) at relatively low concentrations in a high-concentration phosphate buffer at low pH in the normal polarity mode, (II) using MI-S-beta-CD at high concentrations at low pH in the reversed polarity mode, (III) using MI-S-beta-CD at moderately high concentrations in a phosphate buffer at neutral pH in the normal polarity mode, and (IV) using the single isomer heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) at low to moderately high concentrations in a high-concentration BGE at low pH in the normal polarity mode. Among them, enantioseparation of these cationic solutes was best achieved under the conditions of mode (II). In mode (II) and mode (III), temperature is an important factor affecting the enantioresolution of norepinephrine. In mode (I) and mode (IV), the use of a high-concentration BGE (150-200 mM) is crucial for effective enantioseparation of these cationic solutes with sulfated beta-CDs. Comparative studies of enantioseparations of these cationic solutes with MI-S-beta-CD and SI-S-beta-CD reveal that the sulfate substituents of MI-S-beta-CD located at the C(2)- position interact strongly with the diol moiety of catecholamines. 相似文献
We report the successful size-based separations of large, neutral polysaccharides using capillary electrochromatography (CEC). As the polysaccharides possessed little chromophore for photometric detection, two separate approaches were taken. In the first approach, indirect detection was combined with size-exclusion chromatography using a sulfonated polystyrene/divinylbenzene stationary phase. The separations were performed using a 300 A pore size stationary phase under aqueous conditions. Non-size based interactions were minimal using this material, resulting in an effective calibration range of molecular masses 180 to 112 000 g.mol(-1) for pullulans. In the second approach, the polysaccharides were derivatized with phenylisocyanate and were subsequently separated on columns made using a combination of high capacity ion-exchanger and a neutral polystyrene/divinylbenzene material of various pore sizes. The sulfonated ion-exchange phase provided the electroosmotic flow, while the mixed pore size material provided the extended calibration range. The linear range for this primarily nonaqueous system using tetrahydrofuran was determined to be from molecular masses 738 to 404 000 g.mol(-1) of the original, untagged pullulan. This approach overcame the limited solubility issue associated with analysis of some polysaccharides. Analysis of pullulan and amylose samples by CEC correlated well with results obtained by conventional high-performance liquid chromatography (HPLC). The size-exclusion electrochromatographic separations provide an alternative mode for determining the relative molecular weights of polysaccharides with reduced sample and solvent consumption, as well as analysis times. 相似文献
A positively charged chiral stationary phase (CSP) was prepared by chemically immobilizing cellulose 3,5-dimethylphenylcarbamate onto methacryloyldiethylenetriaminopropylated silica (MCDEAPS) via a radical copolymerization reaction. The prepared CSP was evaluated for enantiomer separation in nonaqueous capillary electrochromatography (CEC). Electroosmotic flow (EOF) generated on the prepared CSP could be significantly improved with introduction of positive charges into the CSP, and separation of enantiomers in CEC has been achieved with mobile phases of ethanol and hexane-ethanol, respectively. In addition, we investigated the solvent versatility of the immobilized CSP on enantioseparations in CEC and capillary liquid chromatography (CLC) due to the elimination of dissolution of chiral selector in a number of solvents. Chiral resolution of some enantiomers was improved by adopting tetrahydrofuran (THF) and chloroform as mobile-phase modifiers, respectively. 相似文献
Integration of a packed column onto a microchip for performance of capillary electrochromatography (CEC) is described. The quartz device incorporated a cross-injector, and a double weir trapping design for formation of 1, 2 and 5 mm long CEC columns. Three fluorescent dyes were baseline-resolved with plate numbers of 330,(330,000 plates/m; height equivalent to a theoretical plate, H = 3.0 microm) for BODIPY 493/503, 360 (360,000 plates/m; H = 2.8 microm) for rhodamine 123 and 244 (244,000 plates/m; H = 4.1 microm) for acridine orange (AO) with 500 V applied on a 1 mm long column. The 2 mm column yielded approximately 1.8 times more theoretical plates than did the 1 mm column, when operated at the same flow rate. Van Deemter plots were obtained for the three column lengths, showing increased plate height for the 5 mm length. A 2 mm column gave peak height and area relative standard deviation (RSD) values of 2.5 and 3.3%, respectively, as averages for the three dyes (n = 15). The RSD for the dye retention times was 1% (n = 6) over one day, and 3% (n = 30) over five days. Indirect fluorescence detection of thiourea and of amino acids was possible using a neutral indicator dye (BODIPY 493/503), with a detection limit of 10 microM for amino acids. 相似文献
The authors have developed a rapid and reliable method for the capillary electrochromatographic determination of cephalosporin antibiotics in environmental waters. An open-tubular capillary column was modified with the complex [Cu(mal)(bpy)], a copper(II) complex with malic acid and 4,4′-bipyridyl, by an amide coupling method to act as the stationary phase. The simultaneous determination of the cephalosporins formulations, namely cefapirin (CP), ceftiofur (EFT) and cefixime (CFM) in environmental water samples was accomplished in buffer of pH 5.0 by applying a voltage of 8 kV and with DAD detection. Detection limits typically are 0.1 μg?mL?1.The method was applied to the analysis of cephalosporins in spiked water samples from Kunming Lake to give recoveries betwen 88 and 106%.
Graphical abstract A metal-organic framework (MOF) was synthesized from copper(II), malic acid and 4,4′-bipyridyl and used as stationary phase of capillary electrochromatography (CEC) by covalent immobilization on the capillary inner walls. Compared to an uncoated fused-silica capillary, improved separation of cephalosporin antibiotics can be accomplished.
A chemically bonded cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phase (CSP) was prepared by a radical polymerization reaction. The prepared CSP was packed into fused-silica capillaries with inner diameter of 75 microm to perform enantiomer separations in CEC. The electrochromatographic behavior of the CSP was investigated. On the prepared CSP, high EOF could be generated under acidic mobile phases, which represented an advantage for the separation of acidic enantiomers. Several neutral, acidic, and basic enantiomers were resolved on the prepared CSP under aqueous mobile phases. The column efficiencies were between 20,000 and 100,000 plates/m, which were much higher than those of HPLC. In addition, it was observed that the separation of some enantiomers benefited from the adoption of THF as mobile phase modifier. 相似文献
The current state of chiral separations by thin-layer chromatography using chiral stationary phases is reviewed. Both stationary phases essentially constituted by the chiral selector and those obtained by the impregnation of achiral plates with appropriate chiral selectors are described. Particular attention is paid to commercial and non-commercial cellulose and cellulose-derivative plates, as well as commercially available Chiralplate?, which are currently the most widely used. Some of the most important results obtained to date are reported and discussed; the examples provided illustrate the very wide range of structurally different solutes that can be readily resolved into their enantiomers by planar chromatographic methods. Special attention is paid to the discussion of the retention and resolution factors that influence chiral discrimination. The quantitative analysis of enantiomers is also discussed, especially from the point of view of determination of enantiomeric purity. 相似文献