首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modified graphite oxide (MGO)/Poly (propylene carbonate) (PPC) composites with excellent thermal and mechanical properties have been prepared via a facile solution intercalation method. An intercalated structure of MGO/PPC composites was confirmed by X-ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer-sized dispersion of layered graphite in PPC matrix and the strong interfacial interaction between MGO and PPC, the prepared MGO/PPC composites exhibit improved thermal and mechanical properties in comparison with pure PPC. Compared with pure PPC, the MGO/PPC composites show the highest thermal stability and the Tg is 13.8 °C higher than that of pure PPC, while the tensile strength (29.51 MPa) shows about 2 times higher than that of pure PPC when only 3.0 wt.% MGO is incorporated. These results indicate that this approach is an efficient method to improve the properties of PPC.  相似文献   

2.
Poly(propylene)/clay nanocomposites were prepared by melt intercalation, using pristine montmorillonite (MMT), hexadecyl trimethyl ammonium bromide (C16), poly(propylene) (PP) and maleic acid (MA) modified PP (MAPP), The nanocomposites structure is demonstrated using X‐ray diffraction (XRD) and high resolution electronic microscopy (HREM). Our purpose is to provide a general concept for manufacturing polymer nanocomposites by melt intercalation starting from the pristine MMT. We found different kneaders (twin‐screw extruder or twin‐roll mill) have influence on the morphology of the PP/clay nanocomposites. Thermogravimetric analysis (TGA) shows that the thermal stability of PP/clay nanocomposites has been improved compared with that of pure PP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Intercalated nanocomposites comprised of poly(propylene carbonate) (PPC) and organo-vermiculite (OVMT) was first prepared via direct melt compounding of the alkali-vermiculite intercalated host with PPC in a twin rotary mixer. The dispersion and morphologies of OVMT within PPC were investigated by X-ray diffraction and transmission electron microscopic techniques. The results revealed the formation of intercalated-exfoliated vermiculite sheets in the PPC matrix. Because of the thermally sensitive nature of PPC, thermal degradation occurred during the melt compounding. The degradation led to a deterioration of the mechanical properties of the nanocomposites. Tensile test showed that the yield strength and modulus of the nanocomposites decrease with increasing vermiculite content. The degradation mechanism was discussed according to the results of GPC and TGA measurements.  相似文献   

4.
Poly(butylene terephthalate)/montmorillonite composites (PBT/MMT) were prepared by melt intercalation and then investigated using X-ray diffractometer (XRD) and transmission electron microscope (TEM) as well as parallel plate rheometer. It was found that the composites had various phase morphologies with nanoscales and distinct behaviours of a percolation network structure under certain conditions. The linear viscoelastic region of the composites is much narrower than that for PBT matrix, the percolation threshold of the composites is near 3 wt.%, and the percolation network structure is not stable under a shear as well as in a quiescent annealing process. Moreover, PBT/MMT presents the nature of temperature independence of G′ versus G″ whether the internal percolated tactoids network formed or not. The magnitudes of the stress overshoots observed in the reverse flow experiments were strongly dependent on the rest time, which could be inferred that the ruptured network is reorganized under the quiescent annealing process. Furthermore, PBT/MMT shows a strain-scaling stress response to the startup of steady shear, indicating that the formation of the liquid crystalline-like phase structure in the nanocomposites may be the major drive force for the reorganization of the internal network.  相似文献   

5.
聚丙撑碳酸酯(PPC)是一种新型热塑性生物降解材料,但其热性能及力学性能较差,应用受到限制。以秸秆粉这种农作物副产品作为增强体改性PPC,既可以提高PPC的力学性能同时又可开发利用秸秆资源。氯化聚丙撑碳酸酯(CPPC)是聚丙撑碳酸酯(PPC)经过氯化得到的,对天然纤维表面具有良好的浸润性和粘结性。本文以CPPC为增容剂,通过熔融共混法制备了PPC/秸秆粉复合材料。采用扫描电子显微镜(SEM)、拉伸实验、动态力学性能测试(DMA)及转矩流变仪对复合材料的结构及性能进行了表征,重点考察了CPPC的添加量对复合材料力学和流变性能的影响。结果表明,当CPPC质量分数为1.8%时,可使添加质量分数为30%秸秆粉的PPC复合材料拉伸强度提高38%,模量提高30%。同时,CPPC的引入使复合材料的粘度下降,改善了PPC/秸秆粉复合材料的加工性能。因此,作为增容剂的CPPC为制备高性能PPC/天然纤维复合材料提供了新的解决办法。  相似文献   

6.
Nanocomposites of poly(vinyl alcohol)/silica nanoparticles (PVA-SNs) were prepared by in-situ radical copolymerization of vinyl silica nanoparticles functionalized by vinyltriethoxysilane (VTEOS) and vinyl acetate with benzoyl peroxide (BPO, i.e., initiator), subsequently saponified via direct hydrolysis with NaOH solution. The resulting vinyl silica nanoparticles, PVA-SNs were characterized by means of fourier transformation spectroscopy (FTIR), transmission electron microscopy (TEM) and the elemental analysis method. Effects of silica nanoparticles on viscosity and alcoholysis of PVA-SNs were studied by a ubbelohode capillary viscometer and the back titration method. The morphological structure of PVA-SN films was investigated by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile test were used to determine the thermal and mechanical properties of PVA-SN films. The results indicated that the content of vinyl groups on the surface of the vinyl silica nanoparticles was up to 3.02 mmol/g and vinyl silica nanoparticles had been successfully copolymerized with vinyl acetate. Furthermore, compared to pure PVA, silica nanoparticles bonded with polymer matrix in a low concentration affected the viscosity and alcoholysis of the PVA-SNs materials. At the same time, it resulted in the improvement of the thermal and mechanical properties of the PVA-SN materials due to a strong interaction between silica nanoparticles and the polymer matrix via a covalent bond. It could be found that the optical clarity of the membrane was changed through UV-Vis absorption spectrum due to the introduction of silica nanoparticles.  相似文献   

7.
8.
张会良 《高分子科学》2015,33(3):444-455
Poly(propylene carbonate)(PPC) was melt blended in a batch mixer with poly(butylene carbonate)(PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.  相似文献   

9.
High molecular-weight poly(propylene carbonate) (PPC) can remain intact upon storage in ambient air or in water for 8 months once the catalyst is completely removed. Catalyst-free pure PPC is also thermally stable below 180 °C. At 200 °C, degradation occurs, mainly due to attack of the chain-ended hydroxyl group onto a carbonate linkage, through which the molecular weight distribution is broadened by simultaneous formation of low and high molecular weight fractions. Incomplete removal of hydrogen peroxide generated during the catalyst preparation results in a prepared polymer that contains a substantial amount of polymer chains grown biaxially from hydrogen peroxide, which gives rise to more severe thermal degradation. Experiments conducted in a weathering chamber at high temperature (63 °C) and high humidity (50%) revealed another degradation process involving chain scission through an attack of water molecules onto the carbonate linkage, which progressively and temporally lowers molecular weight.  相似文献   

10.
In this study, the biodegradable poly(lactic acid) (PLA)/montmorillonite (MMT) nanocomposites were successfully prepared by the solution mixing process of PLA polymer with organically-modified montmorillonite (m-MMT), which was first treated by n-hexadecyl trimethyl-ammonium bromide (CTAB) cations and then modified by biocompatible/biodegradable chitosan to improve the chemical similarity between the PLA and m-MMT. Both X-ray diffraction data and transmission electron microscopy images of PLA/m-MMT nanocomposites indicate that most of the swellable silicate layers were disorderedly intercalated into the PLA matrix. Mechanical properties and thermal stability of the PLA/m-MMT nanocomposites performed by dynamic mechanical analysis and thermogravimetric analysis have significant improvements in the storage modulus and 50% loss in temperature when compared to that of neat PLA matrix. The degradation rates of PLA/m-MMT nanocomposites are also discussed in this study.  相似文献   

11.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Summary Thermal and dynamic mechanical properties of carbon dioxide and propylene oxide alternative copolymer, poly(propylene carbonate) (PPC), and the end-capped PPC with maleic anhydride were investigated by means of TG and DMA. A master curve of the storage modulus vs. frequency can be deduced from the isochronal curves. Physical parameters of both plain and MA end-capped PPC were discussed. The results showed that for maleic anhydride (MA) end-capping PPC, an improvement of its thermal stability and mechanical properties accompanied with some modifications of the viscoelastic behavior were obtained.  相似文献   

13.
Cui  Xi-hua  Jin  Jing  Cui  Jie  Zhao  Gui-yan  Jiang  Wei 《高分子科学》2017,35(9):1086-1096
Poly(propylene carbonate) (PPC),the copolymerization product of carbon dioxide and propylene oxide,was chlorinated for the first time in our laboratory.Nuclear magnetic resonance (NMR) spectroscopy and ion chromatography test showed that chlorine atoms were successfully introduced onto the polymer chains of PPC.We named this newborn polymer material as chlorinated poly(propylene carbonate) (CPPC).It is worth noting that the reaction conditions of the chlorination of PPC were quite mild,which could be easily and simply realized at industrial level.What is more important is that CPPC possessed many more distinguished properties in solubility,wettability,adhesiveness,and gas barrier compared with PPC.For example,the bonding strength of CPPC as thermal adhesive is nearly four times higher than that of PPC for wood,stainless steel and glass.The oxygen permeability coefficient of CPPC exhibits a decrease of 33% compared with that of PPC.Moreover,CPPC is quite stable in air,whereas it could be well biodegraded in soil compared with PPC.These results indicated that CPPC could be widely used in the fields of coating,adhesive,barrier materials and so on,which could greatly promote the development of PPC industry.  相似文献   

14.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC.  相似文献   

15.
In this paper, cetyl pyridium chloride (CPC) was employed to modify the montmorillonite. TGA analysis shows that the organic modified clay has higher thermal stability than hexadecyl trimethyl ammonium chloride modified montmorillonite and is suitable to be used for preparing poly(butylene terephthalate) (PBT)/clay nanocomposites at the high temperature. And then PBT/clay nanocomposites were prepared by direct melt intercalation. The results of XRD, TEM and HREM experiments show the formation of exfoliated-intercalated structure. The thermal stability of the nanocomposites does not evidently decrease, but the char residue at 600 °C remarkably increase compared with pure PBT. DSC results indicate that clay improves the melting temperature, the crystallization rate and crystallinity of the PBT molecules in the nanocomposites.  相似文献   

16.
顾林  余海斌 《高分子科学》2015,33(6):838-849
A carbon dioxide copolymer poly(urethane-amine)(PUA) was blended with poly(propylene carbonate)(PPC) in order to improve the toughness and flexibility of PPC without sacrificing other mechanical properties. Compared with pure PPC, the PPC/PUA blend with 5 wt% PUA loading showed a 400% increase in elongation at break, whilst the corresponding yielding strength remained as high as 33.5 MPa and Young's modulus showed slightly decrease. The intermolecular hydrogen bonding interaction in PPC/PUA blends was comfirmed by FTIR, 2D IR and XPS spectra analysis, and finely dispersed particulate structure of PUA in PPC was observed in the SEM images, which provided good evidence for the toughening mechanism of PPC.  相似文献   

17.
Intercalated nanocomposites constituted of poly(butyl methacrylate) (PBMA) as the matrix and an organically modified montmorillonite as the nanosize filler were prepared and rheologically characterized in detail. The rheological behavior of the composites showed dependence on both temperature and clay content. For composites of low clay contents, the steady shear viscosity showed a Newtonian plateau in the low shear rate region at low temperatures and the plateau was replaced by a shear-thinning curve when the temperature was raised. For composites of higher clay contents, strong shear-thinning behavior were observed at all shear rates and all temperatures. The viscoelastic data of the composites showed unusual terminal behavior of a decreasing terminal slope at low frequencies with increasing temperature and clay loading. X-ray diffraction spectra showed that annealing process at higher temperatures shifted the Bragg reflection peaks to a lower angle and broadened the peaks, which provided the evidence for the existence of a temperature-induced solid-like structure that was responsible for the shear thinning and the unusual terminal viscoelastic behavior.  相似文献   

18.
Submicron fibers of medium-molecular-weight poly(vinyl alcohol) (MMW-PVA), high-molecular-weight poly(vinyl alcohol) (HMW-PVA), and montmorillonite clay (MMT) in aqueous solutions were prepared by electrospinning technique. The effect of HMW-PVA and MMT on the morphology and mechanical properties of the MMW-PVA/HMW-PVA/MMT nanofibers were investigated for the first time. Scanning electron microscopy, viscometer, tensile strength testing machine, thermal gravimetric analyzer (TGA), and transmission electron microscopy (TEM) were utilized to characterize the PVA/MMT nanofibers morphology and properties. The MMW-PVA/HMW-PVA ratios and MMT concentration played important roles in nanofiber's properties. TEM data demonstrated that exfoliated MMT layers were well distributed within nanofibers. It was also found that the mechanical property and thermal stability were increased with HMW-PVA and MMT contents.  相似文献   

19.
建立了气相色谱分析聚碳酸丙烯酯中碳酸丙烯酯含量的方法,该方法操作简单,准确度高,可满足工业检测需求.  相似文献   

20.
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号