首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Phase change materials, based on isotactic polypropylene (PP) blended with soft and hard Fischer−Tropsch paraffin wax respectively, were studied in this paper. DSC, DMA, TGA and SEM were used to determine the structure and properties of the blends. While paraffin waxes in the blend changed state from solid to liquid, the PP matrix kept the material in a compact shape. Strong phase separation was observed in both cases, which was more pronounced in the case of soft paraffin wax. Despite the fact that both grades of paraffin wax are not miscible with PP due to different crystalline structures, it was shown that the hard Fischer−Tropsch paraffin wax is more compatible with PP than the soft one. Both waxes plasticized the PP matrix. TGA showed that PP blended with the hard Fischer−Tropsch wax degrades in just one step, whereas blends containing soft paraffin wax degrade in two distinguishable steps. SEM exposed a completely different morphology for the two paraffin waxes and confirmed the lower compatibility of PP and soft paraffin wax. The soft and hard characters of the waxes were manifested in the viscoelastic properties, where the blends containing soft paraffin wax exhibited a lower elastic modulus than pure polypropylene, whereas the hard Fisher−Tropsch paraffin wax solidified the matrix. However, both kinds of blends were able to sustain the dynamic forces applied by the DMA within five cycle runs implying good shape stability.  相似文献   

2.
The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as‐dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as‐dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the α relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass‐transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self‐consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2289–2306, 2005  相似文献   

3.
The structure and thermal properties of linear low‐density polyethylene (LLDPE)/medium soft paraffin wax blends, prepared by melt mixing, were investigated by differential scanning calorimetry (DSC) and small‐ and wide‐angle X‐ray scattering (SAXS and WAXS). The blends form a single phase in the melt as determined by SAXS. Upon cooling from the melt, two crystalline phases develop for blends with more than 10 wt % wax characterized by widely different melting points. The wax acts as an effective plasticizer for LLDPE, decreasing both its crystallization and melting temperature. The higher melting point crystalline phase is formed by less branched LLDPE fractions. On the other hand, the lower melting point crystalline phase is a wax‐rich phase constituted by cocrystals of extended chain wax and short linear sequences of highly branched LLDPE chains. The presence of cocrystals was evidenced by standard DSC results, successive self‐nucleation and annealing (SSA) thermal fractionation and by the detection of a new SAXS signal attributed to the lamellar long period of the cocrystals. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1469–1482  相似文献   

4.
Two grades of low density polyethylene (LDPE) were blended with polyamide-6 (PA) in the 75/25 and 25/75 wt/wt ratios and shaped into ribbons with a Brabender single screw extruder. An ethylene-acrylic acid copolymer (EAA) was used in the 2 phr concentration as a compatibilizer precursor (CP). The morphology of the ribbons and its evolution during high temperature annealing were investigated by scanning electron microscopy (SEM). The results confirmed that EAA does actually behave as a reactive compatibilizer for the LDPE/PA blends. In fact, in the presence of EAA, the interfacial adhesion is improved, the dispersion of the minor phase particles is enhanced and their tendency toward fibrillation is increased, especially for the blends with the higher molar mass LDPE grade. The mechanical properties of the latter blends were found to be considerably enhanced by the addition of EAA, whereas the improvement was relatively modest for the blends with the lower molar mass LDPE. The fracture properties of double end notched samples of the ribbons prepared with the blends containing the lower molar mass LDPE grade were also studied. It was shown that, despite of the increased interfacial adhesion caused by the presence of EAA, the latter plays a measurable positive effect on the fracture properties only for the blends with LDPE as the matrix.  相似文献   

5.
Thermal and dynamic mechanical properties of PES/PPS blends   总被引:1,自引:0,他引:1  
Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290°C and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, Tg of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The thermal decomposition of polyalkenes was investigated as a recycling route for the production of petrochemical feedstock. Low-density polyethylene (LDPE) and polypropylene (PP) were thermally decomposed individually in a batch reactor at 450 °C, thus forming oil/wax products. Then these products were dissolved in primary heavy naphtha to obtain steam cracking feedstock. The selectivity and kinetics of copyrolysis for 10 mass% solutions of oil/waxes from LDPE or PP with naphtha in the temperature range from 740 to 820 °C at residence times from 0.09 to 0.54 s were studied. The decomposition of polyalkene oil/waxes during copyrolysis was confirmed. It was shown that the yields of the desired alkenes (ethene, propene), according to polymer type, increased or only slightly decreased compared to the yields from naphtha.In addition to the primary reactions, the secondary reactions leading to coke formation have also been studied. The formation of coke during copyrolysis of LDPE wax with naphtha was comparable to the coking of pure naphtha. Slightly higher formation of coke was obtained at PP wax solution at the beginning of the measurements, on the clean surface of the reactor. After a thin layer of coke covered the walls, the production was the same as that from naphtha. The results confirm the possibility of polyalkenes recycling via the copyrolysis of polyalkene oils and waxes with conventional liquid steam cracking feedstocks on already existing industrial ethylene units.  相似文献   

7.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Clove essential oil (CEO) is known for having excellent antioxidant and antimicrobial properties, but the poor stability of its components to light and temperature compromise this activity. The aim of this study is to evaluate the textural, antioxidant, antimicrobial and microstructural properties of matrixes produced with representative natural waxes and CEO. Thus, waxy emulsifiers, such as beeswax, candelilla wax, carnauba wax, and ozokerite wax, were employed to create such matrixes. The thermal, microstructural, textural, wetting, antioxidant, antimicrobial and infrared characteristics of the matrixes were then studied. The diverse chemical composition (long-chain wax esters in carnauba wax and short-chain fatty acids and hydrocarbons in beeswax and ozokerite wax, respectively) explained the differences in wetting, texture, melting, and crystallization characteristics. Crystal forms of these matrix systems varied from grainy, oval, to needle-like shape, but keeping an orthorhombic allomorph. The alignment and reorganization of beeswax and ozokerite wax into needle-like crystals increased the matrix strength and adhesion force compared to those of carnauba and candelilla matrixes, which showed weak strength and grainy morphology. The former two waxes and their matrixes also showed the largest plasticity. These lipidic matrixes show potential use for topical applications having acceptable antioxidant and textural properties.  相似文献   

9.
Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1633–1642, 1997  相似文献   

10.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

11.
Binary blends of poly (ether sulphone) (PES) and Nylon-6 were prepared in a whole range of composition by melt extrusion. Miscibility behaviour of the blends were studied using thermal analytical techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Due to the rapid crystallization of Nylon-6 as it is cooled from the melt state, its glass transition behaviour could not be detected even in the quenched samples by DSC. Furthermore, the crystallization and melting behaviour of the blends have been studied by DSC. DMA results show that the dynamic storage modulus of the blends were in-between those of the constituent polymers. Also the glass transition of Nylon-6 phase as determined by the peak in loss tangent remains constant which shows that the two polymers are immiscible. Thermal expansion coefficient of the blends as determined by TMA is greater than that of Nylon-6 signifying the increased dimensional stability of the blends at higher temperatures. Morphological studies done by scanning electron microscopy (SEM) show the biphasic nature of the blends, with clear cut boundaries between the phases because of poor interfacial adhesion. Dispersed particle size is small when Nylon-6 is the dispersed phase because of its lower melt viscosity as compared to PES. Thermal stability of the blends was measured using thermogravimetric analysis (TG). Two-step decomposition behaviour was observed because of macro-phase separated morphology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Natural aging of shape-stabilized phase change materials containing linear low density polyethylene (LLDPE), paraffin wax and expanded graphite (EG) in Qatari climate has been studied. It was found that expanded graphite significantly improved the performance of prepared SSPCMs in multiple ways. Firstly, EG suppressed leakage of paraffin wax from the compact shape of SSPCMs. The addition of 15 wt% of EG to shape stabilized phase change materials (SSPCMs) containing 50 wt% of wax caused a decreasing in the leakage of wax by 50% over 210 days of natural aging.Secondly, ∖expanded graphite enhanced the photochemical stability of the blends; this was confirmed by FTIR analysis, where carbonyl index decreased with EG content.  相似文献   

13.
The preparation process-dependent phase morphology of blends composed of nylon 6 and acrylonitrile-butadiene- styrene(ABS)over a composition range of 30-70 wt% using a styrene-maleic anhydride(SMA)copolymer as the compatibilizing agent with a constant content(5phr)was investigated.The results of the scanning electron microscope (SEM)observation revealed that compared with the binary blends of nylon 6 and ABS,the existence of SMA caused a composition shift of phase inversion to a higher weight fraction of...  相似文献   

14.
张琴  傅强 《高分子科学》2009,(6):833-842
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene an...  相似文献   

15.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

16.
The thermal and mechanical properties of different cross-linked and uncross-linked polyethylene/wax blends were investigated over a period of time. This paper summarizes the results and observations. It was found that (i) both LLDPE and LDPE cross-links in the presence of low dicumyl peroxide concentrations, while wax only grafts onto the polyethylene chains, (ii) polyethylene and wax have relatively good miscibility, (iii) both wax content and cross-linking change the mechanical properties of polyethylene in one way or the other, (iv) the route of sample preparation has a marked influence on the thermal and mechanical properties of the blends, and (v) oxygen-containing groups in oxidised wax apparently do not change the way in which the wax interacts with polyethylene.  相似文献   

17.
YaPeng  傅强 《高分子科学》2004,(5):431-438
Metallocene-catalyzed short chain branched polyethylene (SCBPE) was blended with LDPE, HDPE, PS, EPDM and iPP in the weight proportions of 80 and 20. The crystallization and mechanical properties of these blends were studied by PLM, DSC and DMA. It has been observed in PLM that SCBPE/LDPE, SCBPE/HDPE and SCBPE/EPDM can form band spherulites whose band width and size are both smaller than that of the pure SCBPE. Tiny crystallites are observed in the completely immiscible SCBPE/PS blend. The crystallites in SCBPE/iPP are very small and only irregular spherulites are seen. The crystallization kinetics and mechanical properties of SCBPE are greatly affected by the second polyolefin, but in a different way, depending on the phase behavior and the modulus of the second components. SCBPE may be phase miscible in the melt with HDPE, LDPE and EPDM and co-crystallize together with HDPE or LDPE during cooling. A big change of crystal morphology and crystallization kinetics is seen in SCBPE/iPP blend compared with pure SCBPE and the lowest tanδ is also seen for this system. DMA results show that the tensile modulus of the blends has nothing to do with phase behavior, but only depends on the modulus of the second component.  相似文献   

18.
Summary: The influences of short chain branching (SCB) and molecular (Mw) weight of low density polyethylene (LDPE) on the solid state properties of polypropylene (PP)-LDPE blends were investigated by mechanical and thermal techniques. DSC analysis of all blends exhibit a double melting peak at all compositions studied thus suggesting that both PP and LDPE crystals exist separately in the solid state. It was found that the SCB and Mw of LDPE influenced the modulus and ultimate tensile strength of the blends. However, elongation at break seems to be independent of the molecular characteristics of the pure homopolymer especially at PP blend composition greater than 50%. LDPE with high SCB showed broader melting peaks. Addition of a small amount of a low Mw LDPE (10%) resulted in a higher elongation at break than a high Mw LDPE. There is likely a correlation between the presence of a new peak in the thermograms of PP-rich blends and the observed poor elongation at break.  相似文献   

19.
DSC analysis of wax/polymer blends is carried out between 270 and 420 K. Calibration for melting point and enthalpy is normally carried out using indium (melting point 430 K), which is unsatisfactory for these materials. IUPAC organic standards covering this range tend to sublime and their onset temperatures are variable. Pure alkanes have similar thermal characteristics to wax/polymer blends and some have been well characterised by adiabatic calorimetry. They are being investigated as alternative secondary calibration standards to give more accurate thermal characterisation of wax/polymer blends. Also,n-triacontane can be used to check DSC resolution.  相似文献   

20.
The steam cracking (copyrolysis) of naphtha with oils/waxes from thermal decomposition of polyalkenes has been investigated as a process for chemical recycling of plastic wastes. High-density polyethylene (HDPE), two-component mixture (LDPE/PP) and three-component mixture (HDPE/LDPE/PP) were thermally decomposed in a batch reactor at 450 °C, thus forming oil/wax products. Subsequently, these products were dissolved in heavy naphtha in the amount of 10 mass% to obtain steam cracking feedstock. The composition of gaseous and liquid products during copyrolysis was studied at 780 °C and 820 °C in dependence on residence time from 0.08 s to 0.51 s. The obtained results were compared with the product composition from steam cracking of naphtha at identical experimental conditions. The decomposition of polyalkene oils/waxes during copyrolysis was confirmed on the basis of analysis of liquid products. It was shown that more ethene and propene was formed during copyrolysis of oil/wax from HDPE in comparison with naphtha and both mixtures and so oil/wax from HDPE seems to be favourable component of steam cracking feedstock. There were slight differences between product compositions from copyrolysis of two- and three-component mixtures. The presence of HDPE in three-component mixture supported formation of gas and ethene. The presence of oil/wax form PP enhanced formation of propene and branched alkenes. For both type of polyalkenic mixtures the yields of desired low molecular alkenes and alkanes were higher or approximately the same as from naphtha. The results confirm suitability of oils/waxes from polyalkenes as a co-feed for steam cracking units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号