首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

2.
3.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

4.
H-type amphiphilic liquid crystalline block copolymers containing azobenzene were synthesized by atom transfer radical polymerization (ATRP). Macroinitiators prepared by the esterification between poly(ethylene oxide) (PEG) and 2,2-dichloroacetyl chloride were utilized to initiate the polymerization of 6-[4-(4-ethoxyphenylazo)phenoxy]hexyl rnethacrylate (M6C). The resulting macroinitiators and block copolymers were characterized by ^1H NMR, gel permeation chromatography (GPC). Polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) preliminarily revealed the liquid crystalline property of these block copolymers. This series of liquid crystalline block copolymers are promising in some areas, such as optical data storage, optical switch, and molecular devices.  相似文献   

5.
Poly(i-butyl methacrylate)-polystyrene block copolymer was successfully prepared in an aqueous medium by two-step atom transfer radical polymerization (ATRP), mini-emulsion- and seeded-ATRP, in which ethyl 2-bromoisobutyrate/CuBr/4,4-dinonyl-2,2-dipyridyl initiator system was used. The block copolymer had narrow molecular weight distribution (Mw/Mn=1.1) and the number-average molecular weight measured by gel permeation chromatography agreed with the calculated value.Part CCXLVIII of the series Studies on Suspension and Emulsion  相似文献   

6.
新型线状-树枝状两亲嵌段共聚物的合成   总被引:6,自引:0,他引:6  
本文设计合成了一系列由不同链长的聚丙烯酸(PAA)为亲水嵌段和不同代数聚苄醚树枝体(Dendr.PBE)为疏水嵌段的杂化共聚物(PAA-Dendr.PBE)。  相似文献   

7.
Atom transfer radical polymerization (ATRP) of tert-butyl methacrylate (tBMA) was investigated using cuprous bromide with different ligands, solvents, deactivators, etc. The polymerization in bulk and diphenyl ether solvent system performed using Cu(I)Br complexed with NNN′, N″, N″-pentamethyldiethylenetriamine (PMDETA) catalyst in conjunction with 2-bromopropionitrile as an initiator at room temperature showed a curvature in the first-order kinetic plot. The controlled polymerization in methanol solution resulted in slower rate of polymerization and lower molecular weights. Well-defined diblock copolymers of PSt-b-PtBMA synthesized by polystyrene bromo macroinitiator (PSt-Br) with Cu(I)Cl/PMDETA catalyst system yielded predetermined molecular weights and lower polydispersities. Otherwise, the Cu(I)Br/PMDETA catalytic system showed an inefficient polymerization of tert-butyl methacrylate with lower molecular weights and higher polydispersities. Subsequent hydrolysis of the homopolymer refluxed in dioxane with addition of HCl afforded well-defined poly(methacrylic acid).  相似文献   

8.
蔡正国 《高分子科学》2013,31(4):541-549
This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo- and copolymerization of propylene, higher 1-alkene, and norbornene with ansa-fluorenylamidodimethyltitaniumbased catalyst according to the authors’ recent results. The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.  相似文献   

9.
The synthesis of well-defined block copolymers from styrene and methyl acrylate via ATRP is discussed in this contribution. Kinetic studies on these block copolymerizations as well as characterization studies were performed to investigate the monomer composition in the respective PS and PMA blocks. MALDI-TOF-MS was performed to clarify the exact number of repeating units of each block and the total number of units in the block copolymer. Block copolymers up to 22 kDa could be analyzed by MALDI-TOF-MS, whereby polymers with PMA as first block showed a large second distribution corresponding to PMA homopolymers. However, SEC demonstrated that only a small amount of homopolymer was present indicating that care needs to be taken with interpreting MALDI-TOF-MS data, which is a qualitative rather than a quantitative technique.  相似文献   

10.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

11.
Polymerisation of vinyl acetate by conventional free radical polymerisation using a diazo initiator followed by copper mediated living radical polymerisation with a range of monomers was studied. This method led to the synthesis of triblock copolymers. We have thus successfully prepared several new ABA triblock copolymers where B is poly(vinyl acetate) and A is (dimethylamino)ethyl methacrylate (DMAEMA), (polyethylene glycol) methyl ether methacrylate (MeO(PEG)MA) or solketal methacrylate (SMA). The sequential conventional/living radical polymerisation approach provided an efficient route to synthesis of new block copolymers. The properties of these amphiphilic polymers have been subsequently investigated by 1H NMR, fluorescence spectroscopy, tensiometry and dynamic light scattering to investigate their behaviour as potential surfactants.  相似文献   

12.
The transformations of living cationic polymerization to ATRP to form the block and graft copolymers of β-pinene with styrene were performed. Poly(β-pinene) carrying benzyl chloride terminal [poly(β-p)StCl] was prepared by capping the living poly(β-pinene), which was obtained with 1-phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, with a few units of styrene. Poly(β-p)StCl, in conjunction with CuCl and bpy, could initiate the ATRP of styrene and gave well-defined block copolymer of β-pinene and styrene. In contrast, tert-alkyl-chlorine-capped poly(β-pinene) [poly(β-p)Cl] obtained by living cationic polymerization of β-pinene per se without capping of styrene gave a mixture of desired block copolymers and unreacted poly(β-p)Cl due to the low initiating reactivity of poly(β-p)Cl. Brominated poly(β-pinene) synthesized by the quantitative bromination of poly(β-pinene) using NBS was also used to initiate the ATRP of styrene in the presence of CuBr and bpy to prepare the graft copolymer of β-pinene and styrene. The first-order kinetic characteristic and linear increment of molecule weight with the increasing of monomer conversion indicated the living nature of this ATRP grafting.  相似文献   

13.
The paper describes the optimization of copper(I) mediated living radical polymerization of N-hydroxysuccinimide methacrylate to achieve AB block copoly(acryl amides) offering a route to polymers with potential biomedical applications. Polymerization of N-hydroxysuccinimide methacrylate was carried out using copper(I) bromide/N-(n-propyl)-2-pyridylmethanimine catalyst with ethyl-2-bromoisobutyrate as the initiator at three different temperatures (70, 50 and 30 °C). Polymerizations at both 70 and 50 °C gave relatively high conversion, 72% and 62% respectively after 4 h. Polymerization at 30 °C the best linear first-order kinetic plot. The polydispersity remained narrow (1.15) and there was a good agreement between experimental, determined by 1H NMR, and theoretical Mn. Polymerization of N-hydroxysuccinimide methacrylate was investigated in more detail by following reactions in situ by 1H NMR. The experimental values of Mn (NMR) were quite close to the theoretical values and the polydispersities were relatively narrow (1.10-1.19). Isolated poly(N-hydroxysuccinimide methacrylate) was used as a macroinitiator for the polymerization of MMA catalyzed by Cu(I)Br in conjunction with N-(n-propyl)-2-pyridylmethanamine ligand leading to block copolymers. A poly(methyl acryl amide) is synthesized indirectly from the reaction of benzyl amine with poly(N-hydroxysuccinimide methacrylate) for 5 h with in DMSO at 50 °C under nitrogen.  相似文献   

14.
Continuous ATRP of MMA was carried out in a flow tubular reactor with varying flow rate, temperature, and [monomer]/[initiator] ratios. Changing the flow rate directly relates to the reaction time. This process produces polymer continuously with the conversion increasing with decreasing flow rate. The molecular weight (relating to the flow rate) increases linearly with conversion which is also observed when the [monomer]/[initiator] ratio was changed. The effect of altering the reaction temperature was studied and the apparent activation energy of the propagation reaction of MMA in this system was calculated to be ∼56.9 kJ mol−1, close to the values reported previously. Preparation of diblock copolymers is also reported with varying comonomers and the conversion, and SEC results suggested that this continuous system is an excellent and facile way to have a continuous ATRP process.  相似文献   

15.
Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH_2CH_2OCOCCl_3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH_2CH_2OCOCCl_3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH_2CH_2OCOCCl_3 (PS-Cl_3) or P(S-b-B)-CH_2CH_2O-COCCl_3 (PSB-Cl_3) was used as the macroinitiator in thepolymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared bythe integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl_3 and the P(S-b-MMA) were identified by FTIR and ~1H-NMR spectrum, respectively. A new way to design blockcopolymers (the combination of LAP and ATRP) was developed.  相似文献   

16.
In this work, the syntheses of poly(butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate) triblock copolymer and poly(methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate-b-butyl methacrylate-b-methyl methacrylate) pentablock copolymers using copper mediated living radical polymerisation are reported. Living radical polymerisations were performed using the system CuIBr/N-(n-propyl)-2-pyridylmethanimine as catalyst in conjunction with a difunctional initiator, the 1,4-(2-bromo-2-methylpropionoto)benzene (1). The syntheses of poly(MMA), poly(BMA-b-MMA-b-BMA) and poly(MMA-b-BMA-b-MMA-b-BMA-b-MMA) are described in detail using 1H NMR spectroscopy and size exclusion chromatography. The living behaviour and the blocking efficiency of these polymerisations were investigated in each case. Difunctional initiator, 1, based on hydroquinone was synthesised and fully characterised and subsequently used to give difunctional poly(methyl methacrylate) macroinitiators with molecular weights up to 54,000 g mol−1 and polydispersity between 1.07 and 1.32; molecular weights were close to the theoretical values. The difunctional macroinitiators were used to reinitiate butyl methacrylate to give triblock copolymers of Mn between 17,500 and 45,700 g mol−1. Polydispersities remained narrow below 25,000 g mol−1 but broadened at higher masses. The difunctional triblock macroinitiators were subsequently used to reinitiate methyl methacrylate to give ABABA pentablock copolymers with Mn up to 37,000 g mol−1 with polydispersity=1.13. Under certain conditions radical-radical reaction led to a broadening of polydispersity index.  相似文献   

17.
Raf Bussels 《Tetrahedron》2005,61(5):1167-1174
In a novel two- or three-step synthetic route, S-(1,4-phenylenebis(propane-2,2-diyl)) bis(N-methyldithiocarbamate) is reacted at low temperature with various alkyl chloroformates to form various S-tert-alkyl-N,N-alkoxycarbonylmethyl-dithiocarbamate RAFT agents. Also an alternative and novel synthetic route towards S-(1,4-phenylenebis(propane-2,2-diyl)) bis(N-methyldithiocarbamate), is proposed.  相似文献   

18.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

19.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

20.
利用光气法分别以L-谷氨酸和L-丙氨酸为原料,合成了γ-谷氨酸苄酯-NCA单体和L-丙氨酸-NCA单体,再以三乙胺为引发剂,合成了聚(L-丙氨酸)-聚(γ-谷氨酸苄酯)(PLA50-b-PBLG20)双嵌段共聚多肽,并用乙醇胺对其中的PBLG嵌段进行亲核取代,把疏水性的苄酯侧链变为亲水性的羟烷酰胺侧链,得到双亲性的聚(L-丙氨酸)-聚羟乙基谷氨酰胺(PLA-b-PHEGA)双嵌段共聚多肽.利用红外光谱和核磁共振谱对产物进行了表征,用TEM研究了双嵌段共聚多肽PLA50-b-PHEGA20在水溶液中的自组装.研究结果表明,双嵌段共聚多肽在水溶液中可自组装形成囊泡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号