首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aluminum distribution effects on the adsorption of 4,4'-bipyridine (44BPY) in the straight channel of H-ZSM-5 simulated by two ten-membered ring clusters (2-10T) have been investigated by DFT methods. The energetic and structural properties of the complexes formed upon interaction of 44BPY with the zeolite Br?nsted acid sites for six different aluminum distributions were determined by B3LYP/6-31+G* calculations. Dispersion energies were estimated by performing single point calculations at the MP2 and M06-2X levels. Interaction energies were corrected for basis set superposition error (BSSE). The minimum energy pathways of the double proton transfer from H-ZSM-5 to 44BPY were characterized. Two mechanisms are proposed: a concerted mechanism in which both protons are simultaneously transferred giving the bidentate ion pair complex (44BPYH?2?/2-10T2?) and a consecutive mechanism in which one proton is transferred directly leading to the monodentate ion pair complex (44BPYH?/2-10T?), whereas the second proton can be transferred according to Al distribution. The formation of monodentate or bidentate complexes strongly depends on the Al distribution.  相似文献   

2.
The initial stages of the heterogeneous photoreduction of quinone species by self-assembled porphyrin ion pairs at the water|1,2-dichloroethane (DCE) interface have been studied by ultrafast time-resolved spectroscopy and dynamic photoelectrochemical measurements. Photoexcitation of the water-soluble ion pair formed by zinc meso-tetrakis(p-sulfonatophenyl)porphyrin (ZnTPPS(4)(-)) and zinc meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP(4+)) leads to a charge-separated state of the form ZnTPPS(3)(-)-ZnTMPyP(3+) within 40 ps. This charge-separated state is involved in the heterogeneous electron injection to acceptors in the organic phase in the microsecond time scale. The heterogeneous electron transfer manifests itself as photocurrent responses under potentiostatic conditions. In the case of electron acceptors such as 1,4-benzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and tetrachloro-1,4-benzoquinone (TCBQ), the photocurrent responses exhibit a strong decay due to back electron transfer to the oxidized porphyrin ion pair. Interfacial protonation of the radical semiquinone also contributes to the photocurrent relaxation in the millisecond time scale. The photocurrent responses are modeled by a series of linear elementary steps, allowing estimations of the flux of heterogeneous electron injection to the acceptor species. The rate of electron transfer was studied as a function of the thermodynamic driving force, confirming that the activation energy is controlled by the solvent reorganization energy. This analysis also suggests that the effective redox potential of BQ at the liquid|liquid boundary is shifted by 0.6 V toward positive potentials with respect to the value in bulk DCE. The change of the redox potential of BQ is associated with the formation of hydrogen bonds at the liquid|liquid boundary. The relevance of this approach toward modeling the initial processes in natural photosynthetic reaction centers is briefly discussed.  相似文献   

3.
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst () were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.  相似文献   

4.
The acid decomposition of ethylenebis(dithiocarbamate) (EbisDTC) and glycinedithiocarboxylate (glyDTC) was studied in water at 25 degrees C in the range of H(o) -5 to pH 5. The acid dissociation constants of all species involved were calculated from LFER and from the pH-rate profiles. According to the pK(a) of the parent amine of the reactive species, both compounds decompose through the dithiocarbamate anion and a zwitterion intermediate. The intermolecular N-protonation rate constant of the carboxylic conjugate acid of glyDTC anion is 12.6 M(-)(1) s(-)(1), slower than the C-N breakdown. This species also cleaves through an intramolecular general acid-catalyzed mechanism where the rate constant for the N-protonation is (7.1 +/- 4.2) x 10(3) s(-)(1) and the efficiency of the proton-transfer step as measured by the effective molarity is (5.6 +/- 3.3) x 10(2) M. The acid decomposition of the dithiocarbamic conjugate acid of EbisDTC anion proceeds through a fast N-protonation and a slower C-N breakdown. The intramolecular general acid catalysis rate constant is (8.2 +/- 2.8) x 10(6) s(-)(1), but the efficiency of this fast proton transfer is only (14.3 +/- 4.9) M. The intramolecular general acid catalysis of the free acid forms of the carboxylic and dithiocarbamic groups is unfavorable for about 4 kcal mol(-)(1) with respect to the protonation of the external hydron, and consequently, no external buffer catalysis is expected to be observed for dithiocarbamates that decompose through a zwitterion intermediate. The difference between the pK(b) of the proton acceptor and the pK(a) of the donor follows the order of the proton efficiency. Estimation of the strength of the hydrogen bonding in the reagent and product supports the assumption that a thermodynamically favorable change of hydrogen bonding from reagent to product increases the efficiency of proton transfer.  相似文献   

5.
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ~2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.  相似文献   

6.
A survey of recent ab initio calculations on excited electronic states of water clusters and various chromophore-water clusters is given. Electron and proton transfer processes in these systems have been characterized by the determination of electronic wave functions, minimum-energy reaction paths and potential-energy profiles. It is pointed out that the transfer of a neutral hydrogen atom (leading to biradicals) rather than the transfer of a proton (leading to ion pairs) is the generic excited-state reaction mechanism in these systems. The hydrated hydronium radical, (H3O)(aq), plays a central role in this scenario. The electronic and vibrational spectra of H3O(H2O)(n) clusters and the decay mechanism of these metastable species have been investigated in some detail. The results suggest that (H3O)(aq) could be the carrier of the characteristic spectroscopic properties of the hydrated electron in liquid water.  相似文献   

7.
A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component. From a comparative study of the excited acid properties in water and methanol and of its conjugate base in basic solution of water, we propose a modified mechanism for the ESPT consisting of two reactive steps followed by a diffusive step. In the first, fast, step the photoacid dissociates at about 10 ps to form a contact ion pair RO-*...H3O+. The contact ion pair recombines efficiently to re-form the photoacid with a recombination rate constant twice as large as the dissociation rate constant. The first-step equilibrium constant value is about 0.5 and thus, at short times, <10 ps, only approximately 30% of the excited photoacid molecules are in the form of the conjugated base-proton contact ion pair. In the second, slower, step, of about 100 ps, the proton is separated by at least one water molecule from the conjugate base RO-. The separated proton and the conjugated base can recombine geminately as described by our previous diffusion-assisted model. The new two-step reactive model predicts that the population of the ROH form of HPTS will decrease with two time constants and the RO- population will increase by the same time constants. The proposed model fits the experimental data of this study as well as previous published experimental data.  相似文献   

8.
Photoreduction by amines of oxoisoaporphine dyes occurs via a stepwise mechanism of electron-proton-electron transfer that leads to the metastable N-hydrogen oxoisoaporphine anion. During photoreduction that occurs from the triplet manifold of the oxoisoaporphine, a radical ion A(-)(*), a neutral-hydrogenated radical A-NH(*), and the metastable ion A-NH(-) of the oxoisoaporphine are formed. We present time-resolved spectroscopic data and quantum mechanical semiempirical PM3 and ZINDO/S results for the transient species formed during the flash photolysis of oxoisoaporphines in the presence of amines. These calculations reproduce adequately the experimental spectra of the triplet-triplet absorption near 450 nm, and that of neutral hydrogenated radical of the studied oxoisoaporphines centered at 390 nm. A transient absorption observed near 490 nm, for all of the studied systems, was explained by considering the formation of radical ion pair between the radical anion of the oxoisoaporphine, A(-)(*), and the radical cation of the amine, whose ZINDO/S calculated spectra generate the strongest transition near the experimentally observed absorption maximum at 490 nm, supporting the formation of a radical ion pair complex as the first step of the photoreduction.  相似文献   

9.
Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) is studied in a polymer-surfactant aggregate using femtosecond emission spectroscopy. The polymer-surfactant aggregate is a supramolecular assembly consisting of a triblock copolymer (PEO)(20)-(PPO)(70)-(PEO)(20) (P123) and a cationic surfactant, cetyltrimethylammonium chloride (CTAC). ESPT of the protonated species (HA) in HPTS leads to the formation of A(-). The dynamics of ESPT may be followed from the decay of the HA emission (at approximately 440 nm) and rise of the A(-) emission (at approximately 550 nm). Both steady-state and time-resolved studies suggest that ESPT of HPTS in P123-CTAC aggregate is much slower than that in bulk water, in P123 micelle, or in CTAC micelle. The ratio of the steady-state emission intensities (HA/A(-)) in P123-CTAC aggregate is 2.2. This ratio is approximately 50, 12, and 2 times higher than that respectively in water, in P123 micelle, and in CTAC micelle. Retardation of ESPT causes an increase in the rise time of the A(-) emission of HPTS. In P123-CTAC aggregate, A(-) displays three rise times: 30, 250, and 2400 ps. These rise times are longer than those in CTAC micelle (23, 250, and 1800 ps), in bulk water (0.3, 3, and 90 ps), and in P123 micelle (15 and 750 ps). The rate constants for initial proton transfer, recombination, and dissociation of the ion pair are estimated using a simple kinetic scheme. The slow fluorescence anisotropy decay of HPTS in P123-CTAC aggregate is analyzed in terms of the wobbling-in-cone model.  相似文献   

10.
The photo-induced electron-transfer reaction of 4,4-bipyridine (BPY) with triethylamine (TEA) in acetonitrile is studied by laser flash photolysis. The reaction mechanism and kinetics are found very sensitive to the presence of a small amount of water. At low water concentrations (i.e. <0.003 M), an extremely fast-rising metastable product is detected for the first time. A triplet charge transfer complex (3ECT) is found to be the primary intermediate preceding the electron transfer process. Up to about 0.1 M, water facilitates the electron transfer rate, whereas higher water concentrations retard the rate of electron transfer. The Stern-Volmer plot of the triplet decay rate versus the TEA concentration is consistent with the presence of 3ECT in equilibrium with the free excited triplet state of BPY.  相似文献   

11.
Hydrogen (H(+)) and hydroxide (OH(-)) ions in aqueous solution have anomalously large diffusion coefficients, and the mobility of the H(+) ion is nearly twice that of the OH(-) ion. We describe molecular dynamics simulations of a dissociating model for liquid water based on scaling the interatomic potential for water developed by Ojama?e-Shavitt-Singer from ab initio studies at the MP2 level. We use the scaled model to study proton transfer that occurs in the transport of hydrogen and hydroxide ions in acidic and basic solutions containing 215 water molecules. The model supports the Eigen-Zundel-Eigen mechanism of proton transfer in acidic solutions and the transient hyper-coordination of the hydroxide ion in weakly basic solutions at room temperature. The free energy barriers for proton transport are low indicating significant proton delocalization accompanying proton transfer in acidic and basic solutions. The reorientation dynamics of the hydroxide ion suggests changes in the proportions of hyper-coordinated species with temperature. The mobilities of the hydrogen and hydroxide ions and their temperature dependence between 0 and 50 °C are in excellent agreement with experiment and the reasons for the large difference in the mobilities of the two ions are discussed. The model and methods described provide a novel approach to studies of liquid water, proton transfer, and acid-base reactions in aqueous solutions, channels, and interfaces.  相似文献   

12.
The mechanism for tyrosyl radical generation in the [Re(P-Y)(phen)(CO)3]PF6 complex is investigated with a multistate continuum theory for proton-coupled electron transfer (PCET) reactions. Both water and the phosphate buffer are considered as potential proton acceptors. The calculations indicate that the model in which the proton acceptor is the phosphate buffer species HPO(4)2- can successfully reproduce the experimentally observed pH dependence of the overall rate and H/D kinetic isotope effect, whereas the model in which the proton acceptor is water is not physically reasonable for this system. The phosphate buffer species HPO4(2-) is favored over water as the proton acceptor in part because the proton donor-acceptor distance is approximately 0.2 A smaller for the phosphate acceptor due to its negative charge. The physical quantities impacting the overall rate constant, including the reorganization energies, reaction free energies, activation free energies, and vibronic couplings for the various pairs of reactant/product vibronic states, are analyzed for both hydrogen and deuterium transfer. The dominant contribution to the rate arises from nonadiabatic transitions between the ground reactant vibronic state and the third product vibronic state for hydrogen transfer and the fourth product vibronic state for deuterium transfer. These contributions dominate over contributions from lower product states because of the larger vibronic coupling, which arises from the greater overlap between the reactant and product vibrational wave functions. These calculations provide insight into the fundamental mechanism of tyrosyl radical generation, which plays an important role in a wide range of biologically important processes.  相似文献   

13.
Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.  相似文献   

14.
《Chemical physics letters》1985,113(2):207-212
The photoreduction of the title compounds by triethylamine in toluene and ethanol was found to originate via formation of an exciplex between the lowest triplet anthraquinones and triethylamine. This complex changed to a contact ion pair followed by proton transfer, generating anthrasemiquinone radicals and triethylamine radical.  相似文献   

15.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

16.
The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.  相似文献   

17.
The present contribution reports experimental and computational investigations of the interaction between [Cp*Fe(dppe)H] and different proton donors (HA). The focus is on the structure of the proton transfer intermediates and on the potential energy surface of the proton transfer leading to the dihydrogen complex [Cp*Fe(dppe)(H2)]+. With p-nitrophenol (PNP) a UV/Visible study provides evidence of the formation of the ion-pair stabilized by a hydrogen bond between the nonclassical cation [Cp*Fe(dppe)(H2)]+ and the homoconjugated anion ([AHA]-). With trifluoroacetic acid (TFA), the hydrogen-bonded ion pair containing the simple conjugate base (A-) in equilibrium with the free ions is observed by IR spectroscopy when using a deficit of the proton donor. An excess leads to the formation of the homoconjugated anion. The interaction with hexafluoroisopropanol (HFIP) was investigated quantitatively by IR spectroscopy and by 1H and 31P NMR spectroscopy at low temperatures (200-260 K) and by stopped-flow kinetics at about room temperature (288-308 K). The hydrogen bond formation to give [Cp*Fe(dppe)H]HA is characterized by DeltaH degrees =-6.5+/-0.4 kcal mol(-1) and DeltaS degrees = -18.6+/-1.7 cal mol(-1) K(-1). The activation barrier for the proton transfer step, which occurs only upon intervention of a second HFIP molecule, is DeltaH(not equal) = 2.6+/-0.3 kcal mol(-1) and DeltaS(not equal) = -44.5+/-1.1 cal mol(-1) K(-1). The computational investigation (at the DFT/B3 LYP level with inclusion of solvent effects by the polarizable continuum model) reproduces all the qualitative findings, provided the correct number of proton donor molecules are used in the model. The proton transfer process is, however, computed to be less exothermic than observed in the experiment.  相似文献   

18.
Papain-like cysteine proteases are ubiquitous proteolytic enzymes. The protonated His199/deprotonated Cys29 ion pair (cathepsin B numbering) in the active site is essential for their proper functioning. The presence of this ion pair stands in contrast to the corresponding intrinsic residue p K a values, indicating a strong influence of the enzyme environment. In the present work we show by molecular dynamics simulations on quantum mechanical/molecular mechanical (QM/MM) potentials that the ion pair is stabilized by a complex hydrogen bond network which comprises several amino acids situated in the active site of the enzyme and 2-4 water molecules. QM/MM reaction path computations for the proton transfer from His199 to the thiolate of the Cys29 moiety indicate that the ion pair is about 32-36 kJ mol (-1) more stable than the neutral form if the whole hydrogen bonding network is active. Without any hydrogen bonding network the ion pair is predicted to be significantly less stable than the neutral form. QM/MM charge deletion analysis and QM model calculations are used to quantify the stabilizing effect of the active-site residues and the L1 helix in favor of the zwitterionic form. The active-site water molecules contribute about 30 kJ mol (-1) to the overall stabilization. Disruption of the hydrogen bonding network upon substrate binding is expected to enhance the nucleophilic reactivity of the thiolate.  相似文献   

19.
We investigated the hydrogen bonding structures and proton transfer for the hydration complexes of alizarin (Az) produced in a supersonic jet using fluorescence excitation (FE), dispersed laser induced fluorescence (LIF), visible-visible hole burning (HB), and fluorescence detected infrared (FDIR) spectroscopy. The FDIR spectrum of bare Az with two O-H groups exhibits two vibrational bands at 3092 and 3579 cm(-1), which, respectively, correspond to the stretching vibration of O1-H1 that forms a strong intramolecular hydrogen bond with the C9=O9 carbonyl group and the stretching vibration of O2-H2 that is weakly hydrogen-bonded to O1-H1. For the 1:1 hydration complex Az(H(2)O)(1), we identified three conformers. In the most stable conformer, the water molecule forms hydrogen bonds with the O1-H1 and O2-H2 groups of Az as a proton donor and proton acceptor, respectively. In the other conformers, the water binds to the C10=O10 group in two nearly isoenergetic configurations. In contrast to the sharp vibronic peaks in the FE spectra of Az and Az(H(2)O)(1), only broad, structureless absorption was observed for Az(H(2)O)(n) (n≥ 2), indicating a facile decay process, possibly due to proton transfer in the electronic excited state. The FDIR spectrum with the wavelength of the probe laser fixed at the broad band exhibited a broad vibrational band near the O2-H2 stretching vibration frequency of the most stable conformer of Az(H(2)O)(1). With the help of theoretical calculations, we suggest that the broad vibrational band may represent the occurrence of proton transfer by tunnelling in the electronic ground state of Az(H(2)O)(n) (n≥ 2) upon excitation of the O2-H2 vibration.  相似文献   

20.
Abstract— The photoreduction of methylene blue in the presence of arylaminomethanesulfonates (RAMS = RC6H4NHCH2SO3Na) was studied by laser and conventional flash photolysis. These compounds quenched the methylene blue triplet deviating from a normal Stern-Volmer behaviour. For low quencher concentrations, a Rehm-Weller relationship was found between the k q's and the DL G 's obtained for the electron transfer reactions. The lack of further quenching at higher [RAMS] is ascribed to the formation of a ground state ion pair between the dye and the anionic quencher which, on excitation, forms a triplet state unable to under go electron transfer for steric reasons. A second order decay rate constant was found for the semireduced species (MB') ( ca. 5 × 109 M -1 s-1, independent of the RAMS used) and is attributed to a proton transfer from the radical zwitterion (RC6H4NH CH2SO3) to MB. The overall dependence on the substituent of the bleaching observed by continuous irradiation follows the triplet behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号