共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Siewert I Limberg C Demeshko S Hoppe E 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(30):9377-9388
A ligand that offers two parallel malonate binding sites linked by a xanthene backbone, namely, Xanthmal2-, has been utilised to synthesise dinuclear FeII complex [Fe2(Xanthmal)2] (1). The reactivity of 1 in contact with O2 was investigated at -40 degrees C and room temperature. After activation of O2 through interaction with both iron centres the ligand is oxidised: at the Calpha position monooxygenation and peroxide formation occur, partially accompanied by C-C bond cleavage to yield alpha-keto ester groups. To reveal mechanistic details investigations concerning 1) peroxide decomposition, 2) the reactivity of a corresponding mononuclear complex, 3) the influence of monooxygenation of the ligand on the reactivity and 4) product formation in dependence on time were carried out. The results can be explained by postulating formation of high-valent Fe intermediates and ligand-to-metal electron transfer, and the mechanistic scheme derived includes several steps that mimic the (suggested) functioning of non-heme iron enzymes. In agreement with this proposal, ligand oxidation can also be performed catalytically. Furthermore, we show that via a competitive route [(Xanthmal)2Fe2O] (2) is formed, which is unreactive towards O2 and thus is a dead end with respect to ligand oxidation. Both compounds 1 and 2 were fully characterised, and their properties are discussed. 相似文献
3.
4.
5.
6.
7.
Dr. Sonia Martínez‐Salvador Prof. Dr. Juan Forniés Dr. Antonio Martín Dr. Babil Menjón Dr. Isabel Usón 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(1):324-337
The action of moisture on the homoleptic organoplatinum(II) compound [NBu4]2[Pt(CF3)4] ( 1 ) gives rise to the carbonyl derivative [NBu4][Pt(CF3)3(CO)] ( 2 ), which is itself moisture stable. However, treatment of compound 2 with HCl(aq) results in the formation of [NBu4][cis‐Pt(CF3)2Cl(CO)] ( 3 ), which undergoes degradation of an additional CF3 group by further treatment with HCl(aq) in large excess, affording [NBu4][cis‐Pt(CF3)Cl2(CO)] ( 4 ). The carbonyl derivatives 2 – 4 are fairly stable species, in which the CO ligand, however, can be readily extruded by reaction with trimethylamine N‐oxide (ONMe3). Thus, compound 2 reacts with ONMe3 in the presence of a number of neutral or anionic ligands affording a series of singly or doubly charged derivatives with the general formulae [NBu4][Pt(CF3)3(L)] [L=CNtBu ( 5 ), PPh3 ( 6 ), P(o‐tolyl)3 ( 7 ), tht ( 8 ; tht=tetrahydrothiophene)] and [NBu4]2[Pt(CF3)3X] [X=Cl ( 9 ), Br ( 10 ), I ( 11 )], respectively. Compound 2 also reacts with ONMe3 and pyridin‐2‐thiol (C5H5NS) giving rise to the five‐membered metallacyclic derivative [NBu4][Pt(CF3)2(CF2NC5H4S‐κC,κS)] ( 12 ), which can be viewed as a difluorocarbene species stabilized by intramolecular base coordination. On the other hand, treatment of compound 3 with ONMe3 in the presence of C5H5NS yields the four‐membered metallacyclic compound [NBu4][Pt(CF3)2(NC5H4S‐κN,κS)] ( 13 ). The geometries of the metallacycles in compounds 12 and 13 are compared. In the absence of any additional ligand, compound 3 undergoes dimerization producing the dinuclear species [NBu4]2[{Pt(CF3)2}2(μ‐Cl)2] ( 14 ). Halide abstraction in the latter compound with AgClO4 in THF yields the solvento compound cis‐[Pt(CF3)2(thf)2] ( 15 ). The highly labile character of the THF ligands in compound 15 makes this species a convenient synthon of the “cis‐Pt(CF3)2” unit. 相似文献
8.
9.
10.
A simple protocol that uses [OsIII(OH)(H2O)(L ‐N4Me2)](PF6)2 ( 1 ; L ‐N4Me2=N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis‐1,2‐dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron‐withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46–99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the OsV(O)(OH) species ( 2 ), which is formed via the hydroperoxide adduct, an OsIII(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized. 相似文献
11.
12.
13.
14.
Thomas Raubold Stefanie Freitag Regine Herbst-Irmer Herbert W. Roesky 《无机化学与普通化学杂志》1993,619(5):951-953
Synthesis and Crystal Structure of the Spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 The reaction of (i-Pr)2P(S)N(SiMe3)2 ( 1 ) with SnCl4 in 2:1 ratio yields under elimination of ClSiMe3 the four-membered spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 ( 2 ). The molecular structure of 2 was investigated by an X-ray structure analysis. Compound 2 crystallises in the monoclinic space group P21, Z = 2, a = 938.1(1), b = 1 424.1(2), c = 1 207.2(1) pm, β = 110.59(1)°, R = 2.05% for 4 102 reflexions. Compound 2 is a spirocycle with two Sn? N? P? S-rings joined at tin. The two rings are in cis-position. 相似文献
15.
Schönecker B Zheldakova T Lange C Günther W Görls H Bohl M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(23):6029-6042
Copper(I) complexes incorporating the isomeric bidentate ligands IMPY (iminomethyl-2-pyridines) or AMPY (aminomethylene-2-pyridines) are quite unusual in their ability to bind and activate molecular oxygen. Using these complexes, hydroxylations of nonactivated CH, CH2, or CH3 groups in the gamma-position in relation to the imino-nitrogen atom, and with a specific orientation of one H atom with respect to the binuclear Cu-O species, can be achieved in synthetically useful yields. Through mechanistic studies employing conformationally well-defined molecules (for example, cyclic isoprenoids), coupled with solid-state X-ray structure analyses and force-field calculations, we postulate a seven-membered transition state for this reaction in which six atoms lie approximately in a plane. This plane is defined by the positions of the lone pairs on the nitrogen atoms, as well as the copper and the oxygen atoms. For a successful hydroxylation, one hydrogen atom should be located close to this plane. Prediction of the stereochemical course of these reactions is possible based on a simple geometrical criterion. The convenient introduction of IMPY and AMPY groups as auxiliaries into oxo and primary amino compounds and the simple hydrolysis after the hydroxylation procedure has allowed the synthesis of 3-hydroxy-1-oxo and 3-hydroxy-1-amino compounds. If desired, the 3-hydroxy-1-IMPY and -1-AMPY compounds can be reduced with NaBH4 to obtain 3-hydroxy-1-aminomethylpyridines. For a successful hydroxylation procedure, the method employed for the synthesis of the CuI complexes is very important. Starting either from CuI salts or from CuII salts with a subsequent reduction with benzoin/triethylamine may turn out to be the better way, depending on the ligand and the molecular structure. 相似文献
16.
The reactions of a water-soluble iron(III)-porphyrin, [meso-tetrakis(sulfonatomesityl)porphyrinato]iron(III), [Fe(III)(tmps)] (1), with m-chloroperoxybenzoic acid (mCPBA), iodosylbenzene (PhIO), and H(2)O(2) at different pH values in aqueous methanol solutions at -35 degrees C have been studied by using stopped-flow UV/Vis spectroscopy. The nature of the porphyrin product resulting from the reactions with all three oxidants changed from the oxo-iron(IV)-porphyrin pi-cation radical [Fe(IV)(tmps(*+))(O)] (1(++)) at pH<5.5 to the oxo-iron(IV)-porphyrin [Fe(IV)(tmps)(O)] (1(+)) at pH>7.5, whereas a mixture of both species was formed in the intermediate pH range of 5.5-7.5. The observed reactivity pattern correlates with the E degrees' versus pH profile reported for 1, which reflects pH-dependent changes in the relative positions of E degrees'(Fe(IV)/Fe(III) ) and E degrees'(P(*+)/P) for metal- and porphyrin-centered oxidation, respectively. On this basis, the pH-dependent redox equilibria involving 1(++) and 1(+) are suggested to determine the nature of the final products that result from the oxidation of 1 at a given pH. The conclusions reached are extended to water-insoluble iron(III)-porphyrins on the basis of literature data concerning the electrochemical and catalytic properties of [Fe(III)(P)(X)] species in nonaqueous solvents. Implications for mechanistic studies on [Fe(P)]-catalyzed oxidation reactions are briefly addressed. 相似文献
17.
Bassan A Blomberg MR Siegbahn PE Que L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(2):692-705
The reactivity of [HO-(tpa)Fe(V)=O] (TPA=tris(2-pyridylmethyl)amine), derived from O-O bond heterolysis of its [H(2)O-(tpa)Fe(III)-OOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron-oxo species invoked as an intermediate in Fe(tpa)/H(2)O(2) catalysis was investigated. Hydroxylation of methane and propane by HO-Fe(V)=O was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is demonstrated that this species is capable of stereospecific alkane hydroxylation. The mechanism proposed for alkane hydroxylation by HO-Fe(V)=O accounts for the experimentally observed incorporation of solvent water into the products. An investigation of the possible hydroxylation of acetonitrile (i.e., the solvent used in the experiments) shows that the activation energy for hydrogen-atom abstraction by HO-Fe(V)=O is rather high and, in fact, rather similar to that of methane, despite the similarity of the H-CH(2)CN bond strength to that of the secondary C-H bond in propane. This result indicates that the kinetics of hydrogen-atom abstraction are strongly affected by the cyano group and rationalizes the lack of experimental evidence for solvent hydroxylation in competition with that of substrates such as cyclohexane. 相似文献
18.
Iron(II)-phenylpyruvate complexes of tetradentate tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA) and tridentate benzyl bis(2-quinolinylmethyl)amine (Bn-BQA) were prepared to gain insight into C-C bond cleavage catalyzed by dioxygenase enzymes. The complexes we have prepared and characterized are [Fe(6-Me3-tpa)(prv)][BPh4] (1), [Fe2(6-Me3-tpa)2(pp)][(BPh4)2] (2), and [Fe2(6-Me3-tpa)2(2'-NO2-pp)][(BPh4)2] (3), [Fe(6-Me3-tpa)(pp-Me)][BPh4] (4), [Fe(6-Me3-tpa)(CN-pp-Et)][BPh4] (5), and [Fe(Bn-bqa)(pp)] (8), in which PRV is pyruvate, PP is the enolate form of phenylpyruvate, 2'-NO2-PP is the enolate form of 2'-nitrophenylpyruvate, PP-Me is the enolate form of methyl phenylpyruvate, and CN-PP-Et is the enolate form of ethyl-3-cyanophenylpyruvate. The structures of mononuclear complexes 1 and 5 were determined by single-crystal X-ray diffraction. Both the PRV ligand in 1 and the CN-PP-Et ligand in 5 bind to the iron(II) center in a bidentate manner and form 5-membered chelate rings, but the alpha-keto moiety is in the enolate form in 5 with concomitant loss of a C-H(beta) proton. The PP ligands of 2, 3, 4, and 8 react with dioxygen to form benzaldehyde and oxalate products, which indicates that the C2-C3 PP bond is cleaved, in contrast to cleavage of the C1-C2 bond previously observed for complexes that do not contain alpha-ketocarboxylate ligands in the enolate form. These reactions serve as models for metal-containing dioxygenase enzymes that catalyze the cleavage of aliphatic C-C bonds. 相似文献
19.
20.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster. 相似文献