首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reaction of previously synthesized germylenes and stannylenes based on aminobisphenols RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2MII, M = Ge, R = CH2(2-Py), R´ = But (1); M = Ge, R = Et, R´ = Me (2); M = Sn, R = CH2(2-Py), R´ = But (3); M = Sn, R = Et, R´ = Me (4), containing (tetrylenes 1 and 3) or not containing (tetrylenes 2 and 4) a group capable of additional donation, with allyl bromide leads to the products of the insertion of tetrylenes into the C—Br bond: RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2M(Br)All, M = Ge, R = CH2(2-Py), R´ = But (5); M = Ge, R = Et, R´ = Me (6); M = Sn, R = CH2(2-Py), R´ = But (7); M = Sn, R = Et, R´ = Me (8). The structures of obtained derivatives were confirmed by NMR spectroscopy and elemental analysis. The structures of compounds 4, 5, and 7 were studied by X-ray crystallography. Stannylene 4 was found to be monomeric in the solid phase: the coordination number of the Sn atom is 3. The insertion products 5 and 7 are characterized by the coordination number 6 for the central atom.  相似文献   

2.
The following new triphenylantimony(V) catecholate complexes bearing the protonated imine group are synthesized from the new sterically hindered 3,5-di-tert-butylpyrocatechols (6-(CH=N-o-(C6H4–NH2))-3,5-Cat)H2 (H2L1) and (6-(CH=N-o-(C6H4–OH))-3,5-Cat)H2 (H2L2) containing in position 6 the iminomethyl group bonded to the aniline or phenol substituent: (6-(CH=NH+-o-(C6H4–NH2))-3,5-Cat)SbPh3X (X = Br (I), OMe (III)) and (6-(CH=NH+-o-(C6H4–OH))-3,5-Cat)SbPh3X (X = Br (II), OMe (IV)). The molecular structure of complex III · CH 3 OH in the crystalline state is determined by X-ray diffraction analysis (CIF file CCDC no. 1554694). The electrochemical properties of complexes III and IV are studied by cyclic voltammetry.  相似文献   

3.
Some mixed ligand copper(I) complexes of general formula [Cu(L)(PPh3)3]X (X = Cl (1), ClO4 (2), BF4 (3) or PF6 (4); L = 2-(benzen-1-yl)methyleneamino-3-aminomaleonitrile) were prepared and characterized by physicochemical and spectroscopic methods. A single-crystal X-ray diffraction study of [Cu(L)(PPh3)3]CIO4 (2) revealed that the copper atom is four coordinated in a distorted tetrahedral geometry. Electrochemical studies of complexes 14 show quasireversible redox behavior corresponding to the Cu(I)/Cu(II) couple. Room temperature luminescence is observed for all four complexes. These complexes proved to be effective catalysts for the Sonogashira coupling of terminal alkynes with aryl halides at 90 °C.  相似文献   

4.
The incorporation of LnIII ions into the 12-metallacrown-4 topology affords the formation of four mixed 3d-4f pentanuclear complexes of compositions [NH(C2H5)3]{[Ln(OAc)4] [12-MC Mn III (N)shi-4]}·xH2O (Ln = Sm (1), Gd (2), Tb (3), Dy (4); x = 0.5 for 1 and 3, x = 0.25 for 2, x = 0 for 4; H3shi = salicylhydroxamic acid). Compounds 14 were obtained from the reactions of H3shi with Mn(CH3COO)2·4H2O and Ln(NO3)3·6H2O, in the presence of N(C2H5)3. They all contain a crown-like [Mn4Ln(μ-NO)4]11+ core with four MnIII atoms being at the rim of the crown and an LnIII ion occupying the dome of the crown. The peripheral ligation about the core is provided by four η11:µ acetate groups. The identity of the LnIII ions slightly affects the 12-metallacrown-4 frameworks, as demonstrated by the gradual decrease of the distances between the LnIII ions and the centres of the Mn4 planes (1.85 Å for 1, 1.81 Å for 2, 1.80 Å for 3, and 1.77 Å for 4). Variable-temperature dc magnetic susceptibility studies were carried out on polycrystalline samples of 14. Antiferromagnetic interactions are determined for complexes 14.  相似文献   

5.
Thermal treatment of three monobridged biscyclopentadienes (C5H5)R(C5H5) [R = C(CH3)2 (1), C(CH2)5 (2), Si(CH3)2 (3)] with Re2(CO)10 in refluxing mesitylene gave the corresponding complexes [(η 5-C5H4)2R][Re(CO)3]2 [R = C(CH3)2 (4), C(C5H10) (5), Si(CH3)2 (6)], which were separated by chromatography, and characterized by elemental analysis, IR, and 1H NMR spectroscopy. The molecular structures of complexes 5 and 6 were characterized by X-ray crystal diffraction analysis and show that both are monobridged bis(cyclopentadienyl)rhenium carbonyl complexes in which the molecule consists of two [(η 5-C5H4)Re(CO)3] moieties linked by a single bridge, in which each of the two Re(CO)3 units is coordinated to the cyclopentadienyl ring in an η 5 mode. All three of these monobridged bis(cyclopentadienyl)rhenium carbonyl complexes have good catalytic activities in Friedel–Crafts alkylation reactions.  相似文献   

6.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

7.
We report the preparation of bromo-aryl functionalized bis(diphenylphosphino)amine ligands of the type Ph2PNArPPh2 (1, Ar = p-BrC6H4; 2, Ar = p-BrC6H4–C6H4) and their coordination properties. Mono- and dinuclear complexes were formed with Cu(I), Au(I), Pd(II), Pt(II) and tetranuclear cobalt carbonyl clusters were obtained. The crystal structures of [PdCl2(1)] (3), [PdCl2(2)] (4), [(AuCl)(μ-1)] (6), [Co4(CO)5(μ-CO)3(μ-dppa)(μ-1)] (dppa = Ph2PNHPPh2) (8) and [Co4(CO)5(μ-CO)3(μ-dppm)(μ-1)] (dppm = Ph2PCH2PPh2) (9) have been determined by X-ray diffraction. Whereas the diphosphine ligands chelate the metal center in 3 and 4, and in the Pt(II) complex 5 which is analogous to 3, ligand 1 acts as a bridge in 6 where the separation between the two Au(I) centers is 3.0402(5) Å. In the tetranuclear clusters 8 and 9, and in the cluster 10 analogous to 9 with 2 as bridging ligand, two orthogonal Co–Co edges are bridged by a diphosphine ligand and each cobalt center is thus coordinated by one P donor. Complex 3 was shown to react with the Pd(0) complex [Pd(dba)2] (dba = dibenzylideneacetone) to afford a tetranuclear complex resulting from both the insertion of Pd(0) into the ligand C–Br bond and Pd(II)/Pd(0) comproportionation to form a doubly ligand-bridged Pd(I)–Pd(I) core.  相似文献   

8.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

9.
The reactions of five dinuclear carbonyl complexes [(η 5-C5Me4R)Mo(CO)3]2 [R = allyl, n Bu, t Bu, Ph, Bz] with I2 in chloroform solution gave the corresponding mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes [(η 5-C5Me4R)MoI(CO)3] [R = allyl (1), n Bu (2), t Bu (3), Ph (4), Bz (5)]. The molecular structures of complexes 2, 3 and 5 were determined by X-ray diffraction analysis. The results show that the substituent in the ring can directly affect the Mo–I bond distances; the more sterically hindered the substituent, the longer the Mo–I bond. Friedel–Crafts reactions of aromatic compounds with a variety of alkylation reagents catalyzed by the complexes showed that all of these mononuclear molybdenum carbonyl complexes have catalytic activity in Friedel–Crafts alkylation reactions. Indeed, compared with traditional catalysts, these mononuclear metal carbonyl complexes have obvious advantages such as higher activities, mild reaction conditions, high selectivity, simple post-processing, and environmentally friendly chemistry.  相似文献   

10.
Six new complexes [Mn8(μ4-O)4(phpz)8(MeOH)4]·(MeOH)(H2O) (1) [Co2(HphpzH)(Hphpz)2(phpz)2]·4(MeOH) (2), Ni(Hphpz)2 (3), [Ni(Hphpz)2]·H2O (4), [Zn4(pzpy)4Cl4] (5) and [Cu2(pzpy)2(HCO2)2(H2O)2] (6) have been synthesized by hydrothermal reactions of MCl2·4H2O (M = Mn, Co, Ni, Zn or Cu) with 5-(2-hydroxyphenyl)-3-pyrazole (HphpzH) or 2-(1H-pyrazol-3-yl)pyridine (Hpzpy). The complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Complex 1 is an octanuclear Mn(III) cluster, complexes 2 and 6 are binuclear Co(III) and Cu(II), respectively, complexes 3 and 4 are isomorphous mononuclear species, while complex 5 is a tetranuclear Zn(II) cluster. The magnetic behavior of complex 1 was investigated. Magnetic susceptibility measurements revealed antiferromagnetic exchange interactions between the metal centers in the clusters. The luminescence properties of the complexes were investigated at room temperature in the solid state.  相似文献   

11.
The detailed comparative study is carried out for crystal structure packings of the following gold(III) complexes with unsaturated ligands: [Au(C14H22N4)]Br (I), [Au(C14H23N4)](ClO4)2 (II), [Au(C14H24N4)](H3O)(ClO4)4 (III). The determining role in the topological pattern of packings IIII belongs to the compositions and structures of the cations along with the ability of the ions of the complexes to act as donors and acceptors of hydrogen bonds. The 3D packings of complexes I and II containing iminate six-membered rings are determined and stabilized by a wide network of weak hydrogen bonds (C–H…π, C–H…Au, and C–H…Br(O)) and short contacts Au(N)…O (in structure II). The structure of imine complex III is characterized by one-dimensional piles formed due to hydrogen bonds O(w)–H…O and contacts Au…O of the О(2) atom of anion Сl(1)О 4 - with cations (H3O)+ and [Au(C14H24N4)]3+ (CIF files CCDC 251258 (I), 276132 (II), and 287784 (III)).  相似文献   

12.
Three polyoxometalate-based metal–organic complexes [Co2(H2O)6(TeMo6O24)](3-H2dpyb)·2H2O (1), [M2(4-Hdpyb)2(H2O)6(TeMo6O24)]·6H2O [M = Co (2), Zn (3); 3-dpyb = N,N′-bis(3-pyridinecarboxamide)-1,4-butane, 4-dpyb = N,N′-bis(4-pyridinecarboxamide)-1,4-butane] have been hydrothermally synthesized and characterized by elemental analysis, IR, TG, powder diffraction and single-crystal X-ray diffraction analysis. The structure of complex 1 consists of 1D [Co2(H2O)6(TeMo6O24)] inorganic chains, which are joined together by the 3-dpyb ligands through weak hydrogen bonds to generate a 2D supramolecular network. Complexes 2 and 3 are isostructural; each [TeMo6O24]6? (TeMo6) polyoxoanion chelates either two cobalt or two zinc atoms to generate the discrete complexes [Co2(4-Hdpyb)2(H2O)6(TeMo6O24)] and [Zn2(4-Hdpyb)2(H2O)6(TeMo6O24)], respectively. The electrochemical properties, electrocatalytic and photocatalytic activities of the complexes have been investigated.  相似文献   

13.
A reaction of aminobisphenols EtN{CH2[(4-Alk)(6-But)(2-HO)C6H2]}2, Alk = Me (1); But (2) containing alkyl substituents in the phenol groups with trimethylaluminum and tetra(tert-butoxy)titanium gave two new aluminum derivatives with the Me–Al bond: EtN{CH2[(2-Alk)-(4-But)C6H2(2-O–)]}2Al–Me, Alk = Me (3); But (4), and two new titanium derivatives with the ButO–Ti bond: EtN{CH2[(2-Alk)(4-But)C6H2(2-O–)]}2Ti(O–But)2, Alk = Me (5); But (6). The structures of new compounds were confirmed by NMR spectroscopy and elemental analysis. The structures of complexes 3 and 6 were studied by X-ray crystallography. Complexes 3 and 6 are monomeric in the solid phase: a coordination number of Al atom is 4, that of Ti atom is 5, in addition to the M–O bonds the M←N interactions are also present. Complexes 3–6 were studied as initiators of the ring-opening polymerization of ε-caprolactone. The resulting polymers are characterized by relatively high values of number average molecular weight, with the polydispersity being relatively low.  相似文献   

14.

Background

Re(I) tricarbonyl complexes exhibit immense potential as fluorescence imaging agents. However, only a handful of rhenium complexes have been utilized in biological imaging. The present study describes the synthesis of four novel rhenium complexes, their characterization and preliminary biological studies to assess their potential as biological imaging agents.

Results

Four facial rhenium tricarbonyl complexes containing a pyridyl triazine core, (L1 = 5,5′(3-(2-pyridyl)-1,2,4-triazine-5,6-diyl)-bis-2-furansulfonic acid disodium salt and L2 = (3-(2- pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′′-disulfonic acid sodium salt) have been synthesized by utililzing two different Re metal precursors, Re(CO)5Br and [Re(CO)3(H2O)3]OTf in an organic solvent mixture and water, respectively. The rhenium complexes [Re(CO)3(H2O)L1]+ (1), Re(CO)3L1Br (2), [Re(CO)3(H2O)L2]+ (3), and Re(CO)3L2Br (4), were obtained in 70–85% yield and characterized by 1H NMR, IR, UV, and luminescence spectroscopy. In both H2O and acetonitrile, complexes display a weak absorption band in the visible region which can be assigned to a metal to ligand charge transfer excitation and fluorescent emission lying in the 650–710 nm range. Cytotoxicity assays of complexes 1, 3, and 4 were carried out for rat peritoneal cells. Both plant cells (Allium cepa bulb cells) and rat peritoneal cells were stained using the maximum non-toxic concentration levels of the compounds, 20.00 mg ml?1 for 1 and 3 and 5.00 mg ml?1 for 4 to observe under the epifluorescence microscope. In both cell lines, compound concentrated specifically in the nuclei region. Hence, nuclei showed red fluorescence upon excitation at 550 nm.

Conclusions

Four novel rhenium complexes have been synthesized and characterized. Remarkable enhancement of fluorescence upon binding with cells and visible range excitability demonstrates the possibility of using the new complexes in biological applications.
Graphical abstract Micrograph of rat peritoneal cells incubated with novel rhenium complex under epifluorescence microscope.
  相似文献   

15.
A series of new two-dimensional (2D) lanthanide(III) coordination polymers, namely {[Ln2(μ 2-HTFMIDC)3(DMA)4] · 2H2O} n [Ln = Pr (1); Nd (2); Sm (3); Eu (4); H3TFMIDC = 2-(trifluoromethyl)-1H-imidazole-4,5-dicarboxylic acid, DMA = N,N′-dimethylacetamide] for type I and {[Ln2(μ 2-HTFMIDC)3(DMA)2(H2O)2] · DMA} n [Ln = Eu (5); Gd (6)] for type II, have been successfully prepared under solvothermal conditions and structurally characterized for the first time. Both two types of structures exhibit similar 2D honeycomb-like networks, which are constructed by the linkages of μ 2-HTFMIDC2? bis-(bidentate) bridging ligands and Ln(III) metal centers. However, slightly different ABAB stacking fashions of the 2D layers and distinctly different hydrogen bonding interactions between the neighboring 2D layers are observed in crystal structures of type I and type II, which may be attributed to the lanthanide contraction effect. Meanwhile, the solid-state luminescent properties of 4 and 5 have been also investigated.  相似文献   

16.
Three complexes [Zn2(IPA)2(phen)4](HIPA)2(NO3)2·H2O (1), {[Zn(IPA)2(bipy)]·3H2O}n (2), and {[Mn(IPA)2(bipy)(H2O)]·2H2O}n (3) (HIPA = indole-3-propionic acid, phen = 1,10-phenanthroline, bipy = 4,4′-bipyridine) were synthesized and characterized by physico-chemical and spectroscopic methods. Complex 1 displays a zero-dimensional structure, whilst 2 and 3 show one-dimensional chains, which are linked into supramolecular networks through hydrogen bonding interactions and/or π···π stacking interactions. The luminescence properties of complexes 1 and 2 were investigated.  相似文献   

17.
Reactions of the rigid–flexible N-heterocycle 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl) propane (H2L) with MCl2 (M = Fe, Co, Cu or Zn) gave coordination complexes, {[Fe 2 III Cl4(H2L)2]·2Cl}·EtOH·H2O (1), {[Co3Cl5(HL)]·H2O} n (2), {[Co4Cl4(H2L)2(H2O)4]·[CoCl4]2}·H2O (3), [Cu2Cl3(HL)(H2O)]6·5H2O (4), [Cu 2 II CuICl4(HL)] n (5), {[Zn2Cl2(L)H2O]·H2O} n (6) and [Zn4Cl6(HL)2] (7), which have been characterized by single-crystal X-ray diffraction. Structural analysis reveals that the pyridine triazole ligand attains versatile coordination modes in these complexes. Complexes 1, 3, 4 and 7 consist of 0D clusters with binuclear or tetranuclear units; complex 2 presents a 2D network accompanied by HL? and chloride bridges; complexes 5 and 6 show 1D chains with [Cu3] and [Zn2] subunits. In addition, the electrospray ionization mass spectrometry properties of selected complexes were investigated, revealing the stabilities and structural states of these complexes in solution. These results indicate that H2L is an excellent multiconnection linker for the construction of diverse coordination complexes.  相似文献   

18.
Three Ag(I) complexes of reduced Schiff base amino acid ligands, [Ag2(Hshis)2]·3H2O (1), Ag(Hcgly) (2), and Ag(cala) (3) (H2shis = N-(2-hydroxybenzyl)-l-histidine, H2cgly = N-(2-hydroxy-5-chlorobenzyl)-glycine, Hcala = N-(4-chlorobenzyl)-d,l-alanine), have been synthesized and characterized by X-ray crystallography. Complex 1 shows a dimeric structure, while complex 2 shows one-dimensional zigzag chains, which are extended into a two-dimensional supramolecular sheet by hydrogen bonds. Complex 3 exhibits a 2D sheet structure with dangling arms. The antimicrobial activities of the complexes have been investigated.  相似文献   

19.
Three Ag(I) coordination polymers [Ag(L1)]·(H3bptc)·H2O (1), [Ag2(L2)(oba)]·H2O (2), and [Ag2(L2)2]·(H2bptc) (3) [L1 = 1,4-bis(3,5-dimethylpyrazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid, H2oba = 4,4′-oxybis(benzoic acid)] constructed from N-containing ligands with different flexibilities and organic carboxylates as co-ligands have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis. All three complexes display 1D chain structures, which are further extended into 2D supramolecular networks via non-classical C–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of the complexes 13 have been investigated in detail. Complexes 2 and 3 reveal promising catalytic activities for the degradation of methyl orange in a Fenton-like process.  相似文献   

20.
A series of titanium complexes [(Ar)NC(CF3)CHC(R)O]2TiCl2 (4b: Ar = -C6H4OMe(p), R = Ph; 4c: Ar = -C6H4Me(p), R = Ph; 4d: Ar = -C6H4Me(o), R = Ph; 4e: Ar = α-Naphthyl, R = Ph; 4f: Ar = -C6H5, R = t-Bu; 4g: Ar = -C6H4OMe(p); R = t-Bu; 4h: Ar = -C6H4Me(p); R = t-Bu; 4i: Ar = -C6H4Me(o); R = t-Bu) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4b, 4c and 4h adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4b-c and 4f-i are active catalysts for ethylene polymerization and ethylene/norbornene copolymerization, and produce high molecular weight polyethylenes and ethylene/norbornene alternating copolymers. In addition, the complex 4c/MMAO catalyst system exhibits the characteristics of a quasi-living copolymerization of ethylene and norbornene with narrow molecular weight distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号