首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper [Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback, JDDE 23 (2011), no. 4, 727–790], we have constructed large-amplitude periodic orbits for an equation with delayed monotone positive feedback. We have shown that the unstable sets of the large-amplitude periodic orbits constitute the global attractor besides spindle-like structures. In this paper we focus on a large-amplitude periodic orbit \({\mathcal {O}}_{p}\) with two Floquet multipliers outside the unit circle, and we intend to characterize the geometric structure of its unstable set \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \). We prove that \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) is a three-dimensional \(C^{1}\)-submanifold of the phase space and admits a smooth global graph representation. Within \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \), there exist heteroclinic connections from \({\mathcal {O}}_{p}\) to three different periodic orbits. These connecting sets are two-dimensional \(C^{1}\)-submanifolds of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) and homeomorphic to the two-dimensional open annulus. They form \(C^{1}\)-smooth separatrices in the sense that they divide the points of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) into three subsets according to their \(\omega \)-limit sets.  相似文献   

2.
The two aims of this publication are to introduce a new and rheometer-independent rheometric tool for measuring the axial normal force in oscillatory shear rheology and to study the normal forces of polyolefin melts under large amplitude oscillatory shear (LAOS). A new plate geometry with an incorporated highly sensitive piezoelectric normal force sensor was designed for a rotational rheometer. The new geometry was used to investigate normal forces of polyethylene (PE) melts under LAOS. The resulting stress and normal force data was compared with the data from measurements in commercial high performance rotational rheometers. The stress and the normal force response were Fourier-transformed and their resulting spectra were analysed. The non-linear contributions to the FT-magnitude spectra (i.e. the intensities of the higher harmonics) were analysed using the framework of the Q-parameter, \(Q=I_{3/1}/{\gamma ^{2}_{0}}\) for both the stress spectrum and the normal force spectrum, resulting in the strain-dependent \(Q\left (\gamma _{0}\right )\) and \(Q_{NF}\left (\gamma _{0}\right )\), respectively. The newly designed normal force geometry had a sensitivity in the measurement starting from \(5\times 10^{-5}\) N up to 20 N, and respectively a signal-to-noise ratio (SNR) of \(1:\) 16.000, which is about a factor of 1.8 times better than the best performing commercial rheometers. The new geometry was used to determine \(Q\left (\gamma _{0}\right )\) and \(Q_{NF}\left (\gamma _{0}\right )\), to characterize the shear rheological behaviour of the PE melts. Even rather simple rheometers, those without normal force detection, can be extended utilizing the here presented tools for high sensitive FT-rheology analysing the normal forces.  相似文献   

3.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

4.
In the framework of radon risk management in France, it is necessary to enhance knowledge on radon transfer from its source to exposure areas (e.g., buildings) by developing simple, accurate, numerical models for transient radon transport in three-dimensional (3D) unsaturated porous materials. The equivalent continuum model (ECM) of flow and transport at the interface between the soil and cracks (fissures) in a building foundation (e.g., slab on grade, basement) is attractive, since equivalent (effective) continuum properties assigned to model cells can represent the combined effect of individual cracks and solid matrix of the cracked concrete of the foundation (slab and blocks walls). Although the ECM approach based on the volume averaging method has been used to model flow and transport through cracks at the soil–building interface, it has never been verified numerically. Thus, the goal of the present work is to develop an ECM using this averaging method and to quantify its uncertainties based on its comparison to an accurate numerical discrete crack model (DCM) for flow and transport in the crack. As a first step, the DCM implemented in the TOUGH2/EOS7Rn module has been verified numerically through a comparison to a reference 3D steady-state numerical solution for radon transport into a house with basement under constant negative pressure. Then, 3D results of the DCM and ECM approaches were compared, under time-dependent indoor–outdoor pressure differentials conditions, for two crack line configurations in the basement slab floor and two different soil configurations with different soil permeability and radium \(^{226}\)Ra mass content values. Results of this comparison show that, for a homogeneous soil configuration, discrepancies between ECM and DCM simulated indoor radon activity concentrations decrease with the increase in soil permeability, regardless crack line configuration in the slab floor and soil radium mass content. However, ECM uncertainties were not within the range of absolute errors on measured radon concentration for the higher soil permeability \((1\times 10^{-9}, 1\times 10 ^{-8} \hbox { m}^{2})\) and the higher \(^{226}\hbox {Ra}\) mass content values (4500 \(\hbox {Bq\;kg}^{-1})\), especially for high radon pics induced by sudden increase in indoor air pressure drop. Regardless soil \(^{226}\hbox {Ra}\) mass content and crack line configuration in the slab floor, the ECM showed to be conservative for the two-layered soil configuration with the presence of aggregates beneath the slab foundation, generally practiced in buildings constructions.  相似文献   

5.
In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.  相似文献   

6.
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s~(-iε), so that K = ■ s~(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.  相似文献   

7.
We consider a Riemann problem for the shallow water system \(u_{t} +\big (v+\textstyle \frac{1}{2}u^{2}\big )_{x}=0\), \(v_{t}+\big (u+uv\big )_{x}=0\) and evaluate all singular solutions of the form \(u(x,t)=l(t)+b(t)H\big (x-\gamma (t)\big )+a(t)\delta \big (x-\gamma (t)\big )\), \(v(x,t)=k(t)+c(t)H\big (x-\gamma (t)\big )\), where \(l,b,a,k,c,\gamma :\mathbb {R}\rightarrow \mathbb {R}\) are \(C^{1}\)-functions of time t, H is the Heaviside function, and \(\delta \) stands for the Dirac measure with support at the origin. A product of distributions, not constructed by approximation processes, is used to define a solution concept, that is a consistent extension of the classical solution concept. Results showing the advantage of this framework are briefly presented in the introduction.  相似文献   

8.
The unsteadiness of the flow over a surface-mounted rib involving passive scalar transport is studied using large-eddy simulation (LES) at a Reynolds number of 3000 (based on the rib height, \(h\), and the free-stream velocity, \(U_{0})\). The purpose of the present study is to gain further insight into the physical origin of the flow instability and its effect on passive scalar transport. Fourier spectral analysis of the velocity at different positions suggests that, in addition to the K-H instability in the shear layer (St ≈?0.42), two lower frequencies (St ≈?0.06 and 0.09) also exist. It is observed that the low-frequency instabilities accompany the shedding process of vortical structures. One low frequency, at \(\text {St}\approx 0.06\), is related to the pumping motion of the recirculation bubble, while the other, at \(\text {St}\approx 0.09\), is associated with the flapping mode of the shear layer. Through comparisons of velocity and temperature fields and the spectra of scalar fluctuations, it is found that the passive scalar is transported by the convection of vortical structures.  相似文献   

9.
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation \(u=(u_{1}, \ldots, u_{N})\):
$$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$
where \({\mathbf {X}}\) is a finite, open, symmetric \(N\)-annulus (with \(N \ge2\)), \(\mathscr{P}=\mathscr{P}(x)\) is an unknown hydrostatic pressure field and \(\varphi\) is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when \(N=3\), the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when \(N=2\), the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions \(N \ge4\) and discuss a number of closely related issues.
  相似文献   

10.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

11.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

12.
We show that the mean wall-shear stresses in wall-modeled large-eddy simulations (WMLES) of high-speed flows can be off by up to \(\approx 100\%\) with respect to a DNS benchmark when using the van-Driest-based damping function, i.e., the conventional damping function. Errors in the WMLES-predicted wall-shear stresses are often attributed to the so-called log-layer mismatch, which, albeit also an error in wall-shear stresses \(\tau _\mathrm{w}\), is an error of about \(15\%\). The larger error identified here cannot be removed using the previously developed remedies for the log-layer mismatch. This error may be removed by using the semi-local scaling, i.e., \(l_\nu =\mu /\sqrt{\rho \tau _\mathrm{w}}\), in the damping function, where \(\mu \) and \(\rho \) are the local mean dynamic viscosity and density, respectively.  相似文献   

13.
The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.  相似文献   

14.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

15.
16.
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincaré inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of
$$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^{p-2}\nabla u)}=0, \quad \mathrm {in} \ U_\tau = U \times (\tau _1, \tau _2] , \quad p>1,\quad q>1 \end{aligned}$$
and of its associated Dirichlet problem, respectively. For particular ranges of the exponents p and q, we show that any locally nonnegative weak subsolution, taken in \(Q (\subset \bar{Q}\subset U_\tau )\), is controlled from above by the \(L^\alpha (\bar{Q}) \)-norm, for \(\alpha = \max \{p, q+1\}\). As for the global setting, under suitable assumptions on the boundary datum g and on the initial datum, we obtain sup bounds for u, in \(U \times \{ t\}\), which depend on the \(\sup g\) and on the \(L^{q+1}(U \times (\tau _1, \tau _1+t])\)-norm of \((u-\sup g)_+\), for all \(t \in (0, \tau _2-\tau _1]\). On the critical ranges of p and q, a priori local and global \(L^\infty \) estimates require extra qualitative information on u.
  相似文献   

17.
Conditions guaranteeing asymptotic stability for the differential equation
$$\begin{aligned} x''+h(t)x'+\omega ^2x=0 \qquad (x\in \mathbb {R}) \end{aligned}$$
are studied, where the damping coefficient \(h:[0,\infty )\rightarrow [0,\infty )\) is a locally integrable function, and the frequency \(\omega >0\) is constant. Our conditions need neither the requirement \(h(t)\le \overline{h}<\infty \) (\(t\in [0,\infty )\); \(\overline{h}\) is constant) (“small damping”), nor \(0< \underline{h}\le h(t)\) (\(t\in [0,\infty )\); \(\underline{h}\) is constant) (“large damping”); in other words, they can be applied to the general case \(0\le h(t)<\infty \) (\(t\in [0,\infty \))). We establish a condition which combines weak integral positivity with Smith’s growth condition
$$\begin{aligned} \int ^\infty _0 \exp [-H(t)]\int _0^t \exp [H(s)]\,\mathrm{{d}}s\,\mathrm{{d}}t=\infty \qquad \left( H(t):=\int _0^t h(\tau )\,\mathrm{{d}}\tau \right) , \end{aligned}$$
so it is able to control both the small and the large values of the damping coefficient simultaneously.
  相似文献   

18.
An innovative approach to the design of the gear-tooth root-profile, and its effects on the service life is reported in this paper. In comparison with the widely used trochoidal and the recently proposed circular-filleted root profiles, the optimum profile proposed here is a \(G^2\)-continuous curve that blends smoothly with both the involute of the tooth profile and the dedendum circle. Following the AGMA and ISO standards for fatigue loading, the von Mises stress at the critical section and stress distribution along the gear tooth root are studied. The process leading to gear-tooth failure is composed of the crack initiation phase, in number of cycles \(N_i\), and the crack propagation phase, in \(N_p\) cycles. The strain-life (\(\epsilon\)-N) method is employed to determine \(N_i\), where the crack is assumed to initiate at the critical section. Based on the ANSYS crack-analysis module, the effects of \(G^2\)-continuous blending on the stress intensity factor (SIF) are investigated for different crack sizes. Paris’ law, within the framework of Linear Elastic Fracture Mechanics, is used to correlate the SIF with crack size and, further, to determine \(N_p\). The optimum profile provides a significant reduction in SIF and improvement in both \(N_i\) and \(N_p\). Spur gears are made of high-strength steel alloy 42CrMo4, the effects of its properties and surface treatment on service life improvement not being included in this study.  相似文献   

19.
In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.  相似文献   

20.
Hydrogen gas migration modeling through water-saturated engineering barriers and the host rock of a deep geological repository for radioactive waste is of concern for safety assessment of such facilities. A two-phase two-relaxation-time lattice Boltzmann model using the Rothman and Keller approach was parallelized on graphic processing units to simulate hydrogen gas migration in a 3D image obtained by X-ray microtomography of Opalinus clay microfractures. A dimensional analysis combined with a grid refinement analysis was carried out to set the model parameters to reproduce the realistic viscous, capillary and inertial forces of the natural system. Relative permeabilities curves were first calculated in a simple regular fracture with different initial two-phase configurations. We observed that segmented gas flow configurations led to a drop in the relative gas permeability by two orders of magnitude as compared to parallel flow configuration. The model was then applied to 4\(\times \) refined 3D images. For lower water saturation values (\(0.5 \le S_\mathrm{w} < 0.7\)), hydrogen gas migrated through continuous gas paths oriented in the flow direction. At high water saturation values (\(S_\mathrm{w}\ge 0.7\)), the relative gas permeability dropped to zero because the hydrogen phase segmented into gas pockets that were stuck in local narrow throats of the clay fracture. The study pointed out that the high capillary forces prevented the gas bubbles from distorting themselves to pass through these narrow paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号