首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of cement-based materials for radioactive waste confinement and storage must rest on precise measurements of their physical and chemical properties. An important property is the diffusivity of tritium in its liquid form (tritiated water) through a sample considered as representative. Here, we report quantitatively the effect of radioactive decay compared to the effective diffusion coefficient on tritium diffusion. The numerical model was validated by comparing it to experimental data. We found that, in the worst case scenario, the calculated effective diffusion coefficient of tritiated water based on the classical analytical solution to Fick’s law is underestimated by more than 20 %, compared with the results provided by the numerical model, which accounts for the radioactive decay within the material.  相似文献   

2.
In an effort to quantify microstructure-property relationships, three dimensional imaging experiments were conducted on small cylinder specimens subjected to split cylinder fracture. 3-D images were made using synchrotron-based x-ray microtomography, and the experiments were conducted with an in-situ frame such that a specimen could be examined while under load at varying degrees of damage. The specimens were made of fine-grained portland cement mortar and 0.5 mm glass beads, which served as aggregates. The diameter of the specimens was 5 mm. 3-D image analysis routines were developed or adapted to characterize microstructure and internal damage, which could then be related to bulk splitting strength and fracture energy. For fracture energy calculation, crack surface area could be measured in a way that accounted for roughness, branching, and fragmentation. Results showed that, for the specimens tested, aggregate surface roughness had little effect on strength but significant effect on fracture energy. Split cylinder strength showed correlation with specimen porosity, although there was considerable scatter. Strength did not correlate with maximum flaw size, although flaw location was not evaluated.  相似文献   

3.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

4.
As ultra-thin films or small-scale structures become widely used in electronics and biology, knowledge concerning their near-surface mechanical properties of the materials is increasingly important. Atomic force microscopy (AFM) is employed to determine near-surface elastic modulus via force-penetration curves acquired during indentation. Samples include polydimethylsiloxane (PDMS), parylene, mica, and single-crystal silicon, and indentations are performed with single-crystal silicon and silicon nitride AFM tips. An analysis algorithm based on the secant modulus method is proposed to extract the true penetration curves from the experimental displacement curves. The penetration data is then analyzed in terms of Hertzian model to estimate the elastic modulus. Three concerns in applying nanoscale AFM indentation to the measurement of the elastic modulus of an ultra-thin material are addressed. First, the effect of the lateral force caused by the inclined angle of the cantilevered probe is investigated theoretically and by numerical simulation. A second concern is local plastic deformation induced by a sharp probe tip. In this case, numerical results show a relatively small effect on the force-penetration curves if the plastic deformation is limited to the central area below the probe tip. The deviation of the elastic-plastic simulation from the elastic estimation depends on the yield strength of the material. Finally, the effect of stiffness matching between the AFM probe and the sample is a key issue that is studied numerically, and appropriate stiffness matching criteria are suggested.  相似文献   

5.
Transport in Porous Media - Conventional experiments using natural rock samples have trouble in observing rock structures and controlling fracture properties. Taking advantage of 3D printing...  相似文献   

6.
Durability of concrete structures is strongly conditioned by the occurrence of several chemical and physical phenomena that can be linked to the displacement of water in the constitutive material. Previous studies have already emphasized that in moderate temperature and pressure conditions, water transfers in weakly permeable cementitious material happen predominantly in the liquid phase, and can be modelled as a nonlinear diffusive process. The main goal of this study is to evaluate the intrinsic parameters involved in this diffusive process. For that purpose, a set of isothermal drying experiments are conducted on samples of different types, compositions and sizes. The classical Mualem expressions are fitted to the experimental sorption isotherms, and a numerical 1D model is used to fit the intrinsic permeability of the material. On the one hand, the values of the Mualem parameters we obtain show a significant sensitivity on the nature of the material and on the sample size. On the other hand, the Mualem expression, originally formulated for soils, does not fit perfectly experimental data, especially near saturation. A dual porosity formulation is proposed and allows a better representation of the material behaviour. Numerical simulations conducted with the Mualem tortuosity parameter L set to its usual value of 0.5 show a large underprediction of the value of the unsaturated permeability for low saturation values. It appears necessary to fit this parameter to values between –2.5 and –3 to obtain a good agreement with observed drying kinetics. This discrepancy must be linked to microcracks development in the sample which leads to larger apparent hydraulic conductivity at low saturation states.  相似文献   

7.
In this study,we prepare the specimens of three-dimensional random fibrous(3D RF)material along its through-the-thickness(TTT)and in-plane(IP)directions.The experimental tests of tensile and compressive properties as well as fracture toughness of 3D RF material are performed at elevated temperatures.Then,the porosity(83%,87%and 89%)and temperature dependence of the tensile and compressive strength,elastic modulus,fracture toughness and fracture surface energy of the 3D RF materials for both the TTT and IP directions are analyzed.From the results of the tensile strength and elastic modulus versus material porosities at various temperatures,we find that tensile strength and elastic modulus for the TTT direction are more sensitive to the porosity,but not for the IP direction.Fracture toughness increases firstly and then decreases at a certain critical temperature.Such critical temperature is found to be the lowest for the porosity of 83%.On the other hand,at below 1073 K,the temperature-dependent fracture surface energies with three porosities for the TTT direction show similar variation trends.  相似文献   

8.
Carloni  Christian  Piva  Aldino  Viola  Erasmo 《Meccanica》2004,39(4):331-344
This paper is concerned with the study of the elastostatic fracture response of an orthotropic plate with an inclined crack and subjected at infinity to a biaxial uniform load. To this end an unconventional approach to the derivation of the complex variable expressions of the elastic fields is proposed. The above formulation has been used to solve the boundary value problem as superposition of Mode-I and Mode-II crack problems and it is shown that the near tip asymptotic expressions of stress and displacement fields are affected by non-singular terms originated by load biaxiality. The maximum circumferential tensile stress criterion is applied in order to investigate the effects of non-singular terms on the angle of crack extension.  相似文献   

9.
In this paper, a circumferential external surface flaw in a metallic round pipe under cyclic bending loading is considered. Because of very rapid changes in the geometrical parameters around the crack front region, the mesh generation of this region must be done with great care. This may lead to an increase in the run time which makes it difficult to reach valid results and conclusions. Because of the advantages of the sub-modeling technique in problems which need very high mesh density, this method is used. Stress intensity factors in mode I condition are determined using three-dimensional finite element modeling with 20 node iso-parametric brick elements in the ANSYS 9.0 standard code and the singular form of these finite elements at the crack front. In order to estimate the analysis error, the structural parameter error in energy norm criterion was used. Because of the advantages of non-dimensional analysis, this method is employed, and the stress intensity factors are normalized. For the analysis of the fatigue crack growth, the Paris law is used. The propagation path of the surface flaw is obtained from the diagram of aspect ratio versus relative crack depth. The fatigue crack growth analysis (the relative crack depth against loading cycles diagram) of different initial crack aspect ratio under cyclic loading is also considered. Fatigue shape development of initially semi-elliptical external surface defects is illustrated. The effect of the Paris exponent (material constant) on fatigue crack propagation is shown as well. Moreover, the fatigue crack growth of several specimens is assessed experimentally using a manually-constructed experimental set up. Finally, the experimental results obtained by cyclic bending loading tests are compared with the numerical results. The experimental results show good conformity with the finite element results.  相似文献   

10.
The paper is concerned with the problem of a semi-infinite crack at the interface between two dissimilar elastic half-spaces, loaded by a general asymmetrical system of forces distributed along the crack faces. On the basis of the weight function approach and the fundamental reciprocal identity (Betti formula), we formulate the elasticity problem in terms of singular integral equations relating the applied loading and the resulting crack opening. Such formulation is fundamental in the theory of elasticity and extensively used to solve several problems in linear elastic fracture mechanics (for instance various classic crack problems in homogeneous and heterogeneous media).  相似文献   

11.
三维编织CMC断裂韧性表征形式的试验研究   总被引:5,自引:1,他引:5  
在试验的基础上 ,发现三维编织陶瓷基复合材料断裂试件的裂纹扩展沿着编织角方向进行 ,表现出一种非自相似的裂纹扩展模式 ,表明三维编织CMC的断裂是复合型断裂。利用材料的载荷 -位移曲线和声发射技术 ,分析了三维编织CMC在外载荷作用下的损伤行为和断裂机理 ,并且根据不同的外载荷类型 ,将三维编织CMC的断裂韧性表征分别界定在线弹性和弹塑性的两个领域里 ,初步确定三维编织CMC的断裂韧性表征形式  相似文献   

12.
Analysis of the Interface Crack for Rubber-like Materials   总被引:5,自引:0,他引:5  
The interface crack between two dissimilar rubber materials under mixed load is asymptotically analyzed in this paper. It is shown that the crack tip field is composed of one expanding sector and two shrinking sectors. For the case considered, the interface is located in the expanding sector. Analytical solutions are obtained for both the expanding sector and the shrinking sectors. The structures of the crack tip field obtained in this paper is compared with those in previous works for different constitutive equations.  相似文献   

13.
The assumption of constant local coefficients is one of the first restrictions in most of the smoothing theories for transport in porous media. In this paper we present a formal analysis of the effects produced by nonconstant local transport coefficients on the nonlinear behavior of the effective transport properties. In particular, we use the volume averaging method to study heat transport in a two-component system considering the local thermal conductivities as analytical functions of the temperature. Within this approach we obtain a general expression for the effective nonlinear thermal conductivity dependence on the averaged temperature gradient. The important result is that the effective conductivity is obtained by a linearly bounded problem (the closure problem), just as if the conductivities were constants, by replacing the constant conductivities by the actual temperature dependent ones. As an example, we model the porous medium as cylindrical inclusions in a periodic array and solve the closure problem for the case of the one-equation model. We analyze the values of the second derivative of the thermal conductivity with respect to the temperature to establish the range where the nonlinear corrections must be considered to correctly describe the effective transport.  相似文献   

14.
A renormalization method for the computation of the transport properties of a porous medium modelled as a multiscale random network is proposed. The method applies to electrical conduction, molecular diffusion, hydraulic transport under low Reynolds number, transport of condensable vapour, in the medium fully or partially saturated by one or two immiscible fluids. For 31 test materials, the method previously exposed by the authors for the reconstitution of the pore structure from the mercury intrusion curve is applied. Then, the intrinsic permeability is computed. The results are in good agreement with the measured permeability.  相似文献   

15.
In the present study, we examine non-Gaussian spreading of solutes subject to advection, dispersion and kinetic sorption (adsorption/desorption). We start considering the behavior of a single particle and apply a random walk to describe advection/dispersion plus a Markov chain to describe kinetic sorption. We show in a rigorous way that this model leads to a set of differential equations. For this combination of stochastic processes, such a derivation is new. Then, to illustrate the mechanism that leads to non-Gaussian spreading, we analyze this set of equations at first leaving out the Gaussian dispersion term (microdispersion). The set of equations now transforms to the telegrapher’s equation. Characteristic for this system is a longitudinal spreading that becomes Gaussian only in the longtime limit. We refer to this as kinetics-induced spreading. When the microdispersion process is included back again, the characteristics of the telegraph equations are still present. Now, two spreading phenomena are active, the Gaussian microdispersive spreading plus the kinetics-induced non-Gaussian spreading. In the long run, the latter becomes Gaussian as well. Another non-Gaussian feature shows itself in the 2D situation. Here, the lateral spread and the longitudinal displacement are no longer independent, as should be the case for a 2D Gaussian spreading process. In a displacing plume, this interdependence is displayed as a ‘tailing’ effect. We also analyze marginal and conditional moments, which confirm this result. With respect to effective properties (velocity and dispersion), we conclude that effective parameters can be defined properly only for large times (asymptotic times). In the two-dimensional case, it appears that the transverse spreading depends on the longitudinal coordinate. This results in ‘cigar-shaped’ contours.  相似文献   

16.
Neumann  M.  Abdallah  B.  Holzer  L.  Willot  F.  Schmidt  V. 《Transport in Porous Media》2019,128(1):179-200
Transport in Porous Media - We compare two conceptually different stochastic microstructure models, i.e., a graph-based model and a pluri-Gaussian model, that have been introduced to model the...  相似文献   

17.
Transport in Porous Media - To improve the understanding of gas transport processes in tight rocks (e.g., shales), systematic flow tests with different gases were conducted on artificial micro- to...  相似文献   

18.
An electrochemical technique was used to measure concentration distributions in an aperiodic heterogeneous model for comparison with a stochastic transport theory. Four identical columns, each filled with a homogeneous distribution of glass beads, were threaded together to create a single model with aperiodic heterogeneity. The layers in the model were arranged in different ways providing 24 realizations of the permeability distribution. Comparisons between experimental moment data and moments of simulated mean concentration distributions showed that the model was not able to accurately predict experimentally observed mixing behavior.  相似文献   

19.
Experimental Mechanics - Here we review how the interactions of graphene and other 2D materials with their growth and any target substrates have been characterized. Quantifying such interactions is...  相似文献   

20.
借鉴有关弯道水流流速分布的研究成果,计入深度平均流速与真实流流速分布差值引起的扩散效应,在正交曲线坐标系下建立了平面二维浅水模型.采用以标准κ-ε模型为基础的曲率效应修正紊流模型模拟紊动应力项,在一定程度上考虑了流线弯曲水流紊动应力的各向异性.应用控制体积法和交错网格法离散方程,并用SIMPLEC算法求解离散方程;同时采用修正后的模型对90°弯道水流进行了数值模拟,并与原模型的计算结果及实测资料进行了比较,结果表明该模型能够有效地模拟流线弯曲水流的水力特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号