首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this paper, the effect of uniaxial extension on the crystallization of an ethylene-based butane plastomer is examined by using rheometry coupled with differential scanning calorimetry (DSC). Uniaxial extension experiments were performed at temperatures below and above the peak melting point of the polyethylene in order to characterize its flow-induced crystallization behavior at extensional rates relevant to processing. The degree of crystallinity of the stretched samples was quantified by DSC, i.e., by analyzing the thermal behavior of samples after stretching. Analysis of the tensile strain-hardening behavior very near the peak melt temperature revealed that crystallization depends on temperature, strain, and strain rate. In addition, it was revealed that a very small window of temperatures spanning just 1–2°C can have a dramatic effect on polymer crystallization. Finally, flow-induced crystallization experiments at temperatures close to the peak melting point have shown the recrystallization of multiple crystalline structures within a polymer matrix, witnessed by double peaks within a narrow window of 89–93°C in the DSC thermographs, with the most demonstrable double peak behavior occurring at a temperature of 91°C, a temperature that is just 1°C cooler than the peak melt temperature of the polymer.  相似文献   

2.
A mathematical model is developed for nonequilibrium volume crystallization of a metallic droplet modified by mechanically activated refractory nanoparticles upon its impact onto a solid substrate. The model takes into account the kinetics of heterogeneous and homogeneous nucleation during melt cooling. Specific features of crystallization of a liquid metal (nickel) depending on the concentration and size of modifying particles are examined numerically. A typical feature of the process considered is the maximum supercooling of the melt, whose magnitude depends on the particle size and cooling intensity. Homogeneous nucleation is almost absent. The calculated radii of droplets solidified on the substrate are in good agreement with available experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 29–34, January–February, 2006.  相似文献   

3.
Mathematical modeling is combined with technological experiments to study the flow and heat transfer processes of gallium arsenide (GaAs) single-crystal growth by the Czochralski method. When the heat wave produced by periodic variation of the heatertemperature acts upon the molten material regions adjacent to the crystallization front. It is shown that such comparatively low-energy excitation makes it possible to reduce the striated inhomogeneity of single crystals caused by temperature oscillations near the crystal/melt interface. Kaluga, Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 134–142, January–February, 1998.  相似文献   

4.
 This paper presents results of experimental and analytical investigation on molten alloy drop fragmentation in water pool. Emphasis is directed towards delineating the roles which melt to coolant heat transfer and melt solidification play in the fragmentation process. The strong impact of coolant temperature upon fragmentation process is addressed. A set of 23 drop fragmentation experiments were performed, in which 8 experiments employed a low melting point alloy, cerrobend-70 and 15 experiments using Pb–Bi eutectic alloy as drop fluid. The results show strong impact of coolant temperature on particle size distribution of the fragmented drops. A linear stability analysis of the interface between the two liquid fluids with thin crust growing between them, is performed. A modified dimensionless Aeroelastic number, for Kelvin–Helmholtz instability, is obtained and used as a criteria for fragmentation of molten drops penetrating into another liquid coolant media with lower temperature. The nondimensionalized mean diameter of the fragmented particles is correlated with the Aeroelastic number. Received on 26 March 2000  相似文献   

5.
The linear stability theory is used to investigate analytically the effect of a permeable mush–melt boundary condition on the stability of solutal convection in a mushy layer of homogenous permeability at the near eutectic (solid) limit. The results clearly show that, in contrast to the impermeable mush–melt interface boundary condition, the application of the permeable mush–melt interface boundary condition destabilizes the convection in a mushy layer.  相似文献   

6.
The effects of shear, uniaxial extension and temperature on the flow-induced crystallization of two different types of high-density polyethylene (a metallocene and a ZN-HDPE) are examined using rheometry. Shear and uniaxial extension experiments were performed at temperatures below and well above the peak melting point of the polyethylenes in order to characterize their flow-induced crystallization behavior at rates relevant to processing (elongational rates up to 30 s − 1 and shear rates 1 to 1,000 s − 1 depending on the application). Generally, strain and strain rate found to enhance crystallization in both shear and elongation. In particular, extensional flow was found to be a much stronger stimulus for polymer crystallization compared to shear. At temperatures well above the melting peak point (up to 25°C), polymer crystallized under elongational flow, while there was no sign of crystallization under simple shear. A modified Kolmogorov crystallization model (Kolmogorov, Bull Akad Sci USSR, Class Sci, Math Nat 1:355–359, 1937) proposed by Tanner and Qi (Chem Eng Sci 64:4576–4579, 2009) was used to describe the crystallization kinetics under both shear and elongational flow at different temperatures.  相似文献   

7.
A model for the electron-beam surfacing process is proposed that takes into account the dissolution of the modifying particles in the melt. Critical conditions are determined for various modes of surfacing resulting in nearly homogeneous or composite coatings. A detailed parametric study of the one-dimensional version of the model is performed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 131–142, January–February, 2007.  相似文献   

8.
Mass crystallization was studied on the basis of a crystal-size distribution function for a kinetic law of growth of faces (when the growth rate of a crystal face does not depend on the size and shape of the face) and with allowance for vanishing of individual faces during crystal growth. It is proposed that the crystallization problem should be reduced to a system of equations that admit analytical solutions in some cases of practical interest. Russian Research Center “Applied Chemistry,” St. Petersburg 197198. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 121–134, March–April, 1998.  相似文献   

9.
The process of diffusion growth of a single crystal of plagioclase (consisting of two components: albite and anorthite) from a cooling magma melt is considered. Crystallization starts when the temperature becomes lower than the melting (liquidus) temperature and occurs as a result of the diffusion of melt components to the boundary of the growing crystal. The crystallization process is simulated by solving a system of nonlinear, linked by cross terms, nonstationary diffusion equations for albite, anorthite, and residual melt in the coordinate system moving with the growing crystal boundary. The dependence of the crystal growth rate on undercooling and temperature and of its composition on temperature and pressure is taken into account. Both quantities substantially depend on the component concentration ratio in the melt on the crystal-melt interface. The competition between the diffusion and crystal growth processes and the complex dependence of these processes on the current melt and crystal compositions and the system temperature lead to a strong nonlinearity of the problem. As a result of numerical simulation, it is established that with a linear decrease in temperature the growing crystal composition changes nonmonotonically. This makes it possible to propose a novel interpretation of the crystal zoning typical of natural magmatic systems.  相似文献   

10.
We present a unified constitutive model capable of predicting the steady shear rheology of polystyrene (PS)–nanoparticle melt composites, where particles can be rods, platelets, or any geometry in between, as validated against experimental measurements. The composite model incorporates the rheological properties of the polymer matrix, the aspect ratio and characteristic length scale of the nanoparticles, the orientation of the nanoparticles, hydrodynamic particle–particle interactions, the interaction between the nanoparticles and the polymer, and flow conditions of melt processing. We demonstrate that our constitutive model predicts both the steady rheology of PS–carbon nanofiber composites and the steady rheology of PS–nanoclay composites. Along with presenting the model and validating it against experimental measurements, we evaluate three different closure approximations, an important constitutive assumption in a kinetic theory model, for both polymer–nanoparticle systems. Both composite systems are most accurately modeled with a quadratic closure approximation.  相似文献   

11.
A filament stretching extensional rheometer with a custom-built oven was used to investigate the effect of uniaxial flow on the crystallization of polypropylene. Prior to stretching, samples were heated to a temperature well above the melt temperature to erase their thermal and mechanical histories and the Janeschitz-Kriegl protocol was applied. The samples were stretched at extension rates in the range of 0.01 s-1 £ [(e)\dot] £ 0.75 s-10.01\,\mbox{s}^{-1}\le \dot{{\varepsilon }}\le 0.75\,{\rm s}^{-1} to a final strain of ε = 3.0. After stretching, the samples were allowed to crystallize isothermally. Differential scanning calorimetry was applied to the crystallized samples to measure the degree of crystallinity. The results showed that a minimum extension rate is required for an increase in percent crystallization to occur and that there is an extension rate for which percent crystallization is maximized. No increase in crystallization was observed for extension rates below a critical extension rate corresponding to a Weissenberg number of approximately Wi = 1. Below this Weissenberg number, the flow is not strong enough to align the contour path of the polymer chains within the melt and as a result there is no change in the final percent crystallization from the quiescent state. Beyond this critical extension rate, the percent crystallization was observed to increase to a maximum, which was 18% greater than the quiescent case, before decaying again at higher extension rates. The increase in crystallinity is likely due to flow-induced orientation and alignment of contour path of the polymer chains in the flow direction. Polarized light microscopy verified an increase in number of spherulites and a decrease in spherulite size with increasing extension rate. In addition, small angle X-ray scattering showed a 7% decrease in inter-lamellar spacing at the transition to flow-induced crystallization. Although an increase in strain resulted in a slight increase in percent crystallization, no significant trends were observed. Crystallization kinetics were examined as a function of extension rate by observing the time required for molten samples to crystallize under uniaxial flow. The crystallization time was defined as the time at which a sudden increase in the transient force measurement was observed. The crystallization time was found to decrease as one over the extension rate, even for extension rates where no increase in percent crystallization was observed. As a result, the onset of extensional-flow-induced crystallization was found to occur at a constant value of strain equal to ε c  = 5.8.  相似文献   

12.
The results of experiments on gallium crystal growth under conditions of microturbulent flow in the melt in a nonuniform vibration field are discussed. The vibration field in the conducting melt is generated by superposing profiled constant and oscillating magnetic fields. Among the features of the flow is the onset of intense small-scale turbulent flow which homogenizes the heat and concentration fields in the melt in the neighborhood of the growing crystal. High values of the transport coefficients, in particular, the effective thermal conductivity and diffusion coefficients, which ensure a high degree of supercooling of the melt in the neighborhood of the crystallization front, and a kinetic mechanism of single-crystal growth are recorded.  相似文献   

13.
When a nonhomogeneous solid is melting from below, convection may be induced in a thermally–unstable melt layer. In this study, the onset of buoyancy-driven convection during time-dependent melting is investigated by using similarly transformed disturbance equations. The critical Darcy–Rayleigh numbers based on the melt-layer thickness, Ra H,c, are found numerically for various conditions. For small superheats, the present predictions show that Ra H,c is located between 27.1 and 4π 2 and it approaches the well-known results of the original Horton–Rogers–Lapwood problem. However, for high superheats, it is dependent on the phase change rate λ and the relation of Ra H,c λ = 25.89 is shown.  相似文献   

14.
A model of kinetics of phase transitions in a substance in a metastable state is proposed, where the probability of extensive nucleation owing to homogeneous mechanisms is rather large; the model is an alternative to Kolmogorov’s model. The use of this model is demonstrated to offer analytical solutions that describe both the crystallization processes with similar densities of the liquid and solid phases and, for instance, the kinetics of nucleation and growth of bubbles in surface boiling. Solutions obtained by Kolmogorov’s model and by the present model coincide at the initial stage of the process where the volume fraction of the new phase is small. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 75–80, March–April, 2007.  相似文献   

15.
In the present study laminar transition to oscillatory convection of fluids having different Prandtl numbers in a laterally heated vertical cylindrical enclosure for different aspect ratios (melt height to crucible radius) of 2–4 is investigated numerically for 0.01 ≤ Pr ≤ 10. Numerical solution to two-dimensional axisymmetric transient Navier Stokes equations and energy equation were solved by finite volume method using SIMPLE algorithm. Numerical results illustrate that there exists a critical Rayleigh number for each Prandtl number beyond which sustained laminar oscillatory flow sets in. The oscillatory regime was characterised by the oscillation of the average kinetic energy and average thermal energy of the melt. For a given aspect ratio, critical Rayleigh number increases with Pr upto 1 and then flattens. It was observed that for low Prandtl number fluids, Pr < 1.0, critical Rayleigh number is found to increase with increase in aspect ratio while for high Prandtl number fluids, Pr ≥ 1.0, it is found to decrease with increase in aspect ratio. The influence of aspect ratio on the transient behaviour of the melt volume below and above the critical Rayleigh number was studied.  相似文献   

16.
In [1–3] a series of problems of the motion of heat sources at a temperature higher than the melting point of the surrounding medium was considered. The heat source could be a laser beam or a hot body. Here, the case of a thin wedge heated to a temperature higher than the melting point of the surrounding medium and moving at a constant velocity is investigated. The velocity is high enough for the molten layer formed to be thin. The problem is solved by the method of integral relations. The shape of the molten zone, the drag on the wedge and other flow characteristics of the melt are determined. Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 52–57, September–October, 1988.  相似文献   

17.
Arc current fluctuations between a solid metal electrode and a liquid melt of alkaline carbonates at atmospheric pressure are measured. Arc current fluctuation power spectra are determined from the measurement data. It is shown that the fluctuation power is inversely proportional to the frequency (1/f-fluctuations). The fluctuations have a normal Gaussian distribution. The observed 1/f fluctuations exhibit scale invariance. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 11–15, January–February, 2007.  相似文献   

18.
The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.  相似文献   

19.
A mathematical model for the process of forming of synthetic fibers moving as a bundle is formulated. Three main versions are considered: forming of exposed bundles, forming in shafts with blowing, and stretching of fibers by means of an ejector. Low and high-speed forming regimes are also considered within the framework of the Maxwell model of a viscoelastic fluid. The calculations performed showed that the parameters of the fiber bundle produced depend on the method of forming used and on the local conditions in high-speed stretching, accompanied by oriented crystallization. Dnepropetrovsk State University, Dnepropetrovsk 320625. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 184–192, January–February, 1999.  相似文献   

20.
Two differential constitutive equations, i.e. Giesekus model and Johnson–Segalman model were employed here to predict the time-dependent viscoelastic behavior of an LDPE melt in thixotropy-loop experiments and step shear rate experiment. Multiple relaxation modes were adopted, and the parameters used to describe the nonlinear viscoelasticity in the two models were obtained by fitting the shear-thinning viscosity. The predictions on those transient shear characteristics by the two models are found in qualitative agreement with our previous experiments. Johnson– Segalman model predicts oscillation behavior in the thixotropy-loop and step shear rate experiments, whereas Giesekus model does not. Both models predict higher shear stresses than the experimental data in the case of long time shearing, implying that both models are not able to completely characterize the time-dependent shear stress of the melt at high shear rate.The project was supported by the National Natural Science Foundation of China (10402024, 50335010).The English text was polished by Yunming Chen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号