首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
In this paper we study the piecewise collocation method for a class of functional integral equations with state-dependent delays that is, where the delays depend on the solution. It is well known that these equations typically have discontinuity in the solution or its derivatives at the initial point of integration domain. This discontinuity propagated along the integration interval giving rise to subsequent points, called ”singular points”, which can not be determined priori and the solution derivatives in these points are smoothed out along the interval. Most of the known numerical methods for this type of equations are generally very sensitive to the singular points and therefore must have a process that detects these points and insert them into the mesh to guarantee the required accuracy. Here, we present a numerical algorithm based on the piecewise collocation method and an approach for tracking the singular points relying on the recent strategy for implicit delay differential equations which has been proposed by Guglielmi and Hairer in 2008. The convergence analysis of the method is investigated and some numerical experiments are presented for clarifying the robustness of the method.  相似文献   

2.
In this paper we consider a class of neutral delay differential equations with state dependent delays. For such equations the possible discontinuity in the derivative of the solution at the initial point may propagate along the integration interval giving rise to subsequent points, called “breaking points”, where the solution derivative is still discontinuous. As a consequence, in a right neighbourhood of each such point we have to face a Cauchy problem where the equation has a discontinuous right-hand side. In this case the existence and the uniqueness of the solution is no longer guaranteed to the right of such points and hence the solution of the neutral equation may either cease to exist or bifurcate. After illustrating why uniqueness and existence of the solution is no longer guaranteed for general state-dependent problems and showing a possible way to detect these occurrences automatically, we explain how to generalize/regularize the problem in order to suitably extend the solution beyond the breaking point. This is important, for example, when exploring numerically the presence of possible periodic orbits.  相似文献   

3.
In this paper, we propose two efficient numerical integration processes for initial value problems of ordinary differential equations. The first algorithm is the Legendre–Gauss collocation method, which is easy to be implemented and possesses the spectral accuracy. The second algorithm is a mixture of the collocation method coupled with domain decomposition, which can be regarded as a specific implicit Legendre–Gauss Runge–Kutta method, with the global convergence and the spectral accuracy. Numerical results demonstrate the spectral accuracy of these approaches and coincide well with theoretical analysis.   相似文献   

4.
We consider a reaction–diffusion parabolic problem on branched structures. The Hodgkin–Huxley reaction–diffusion equations are formulated on each edge of the graph. The problems are coupled by some conjugation conditions at branch points. It is important to note that two different types of the flux conservation equations are considered. The first one describes a conservation of the axial currents at branch points, and the second equation defines the conservation of the current flowing at the soma in neuron models. We study three different types of finite-difference schemes. The fully implicit scheme is based on the backward Euler algorithm. The stability and convergence of the discrete solution is proved in the maximum norm, and the analysis is done by using the maximum principle method. In order to decouple computations at each edge of the graph, we consider two modified schemes. In the predictor algorithm, the values of the solution at branch points are computed by using an explicit approximation of the conservation equations. The stability analysis is done using the maximum principle method. In the predictor–corrector method, in addition to the previous algorithm, the values of the solution at the branch points are recomputed by an implicit algorithm, when the discrete solution is obtained on each subdomain. The stability of this algorithm is investigated numerically. The results of computational experiments are presented.  相似文献   

5.
We consider implicit integration methods for the solution of stiff initial value problems for second-order differential equations of the special form y' = f(y). In implicit methods, we are faced with the problem of solving systems of implicit relations. This paper focuses on the construction and analysis of iterative solution methods which are effective in cases where the Jacobian of the right‐hand side of the differential equation can be split into a sum of matrices with a simple structure. These iterative methods consist of the modified Newton method and an iterative linear solver to deal with the linear Newton systems. The linear solver is based on the approximate factorization of the system matrix associated with the linear Newton systems. A number of convergence results are derived for the linear solver in the case where the Jacobian matrix can be split into commuting matrices. Such problems often arise in the spatial discretization of time‐dependent partial differential equations. Furthermore, the stability matrix and the order of accuracy of the integration process are derived in the case of a finite number of iterations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Inexact implicit methods for monotone general variational inequalities   总被引:32,自引:0,他引:32  
Solving a variational inequality problem is equivalent to finding a solution of a system of nonsmooth equations. Recently, we proposed an implicit method, which solves monotone variational inequality problem via solving a series of systems of nonlinear smooth (whenever the operator is smooth) equations. It can exploit the facilities of the classical Newton–like methods for smooth equations. In this paper, we extend the method to solve a class of general variational inequality problems Moreover, we improve the implicit method to allow inexact solutions of the systems of nonlinear equations at each iteration. The method is shown to preserve the same convergence properties as the original implicit method. Received July 31, 1995 / Revised version received January 15, 1999? Published online May 28, 1999  相似文献   

7.
We introduce a new class of methods for the Cauchy problem for ordinary differential equations (ODEs). We begin by converting the original ODE into the corresponding Picard equation and apply a deferred correction procedure in the integral formulation, driven by either the explicit or the implicit Euler marching scheme. The approach results in algorithms of essentially arbitrary order accuracy for both non-stiff and stiff problems; their performance is illustrated with several numerical examples. For non-stiff problems, the stability behavior of the obtained explicit schemes is very satisfactory and algorithms with orders between 8 and 20 should be competitive with the best existing ones. In our preliminary experiments with stiff problems, a simple adaptive implementation of the method demonstrates performance comparable to that of a state-of-the-art extrapolation code (at least, at moderate to high precision).Deferred correction methods based on the Picard equation appear to be promising candidates for further investigation.  相似文献   

8.
In this paper fast implicit and explicit Runge–Kutta methods for systems of Volterra integral equations of Hammerstein type are constructed. The coefficients of the methods are expressed in terms of the values of the Laplace transform of the kernel. These methods have been suitably constructed in order to be implemented in an efficient way, thus leading to a very low computational cost both in time and in space. The order of convergence of the constructed methods is studied. The numerical experiments confirm the expected accuracy and computational cost. AMS subject classification (2000)  65R20, 45D05, 44A35, 44A10  相似文献   

9.
We establish a coupled fixed point theorem for a meaningful class of mixed monotone multivalued operators, and then we use it to derive some results on the existence of quasisolutions and unique solutions to first-order functional differential equations with state-dependent deviating arguments. Our results are very general and can be applied to functional equations featuring discontinuities with respect to all of their arguments, but we emphasize that they are new even for differential equations with continuously state-dependent delays.  相似文献   

10.
本文利用Banach压缩映像原理证明了在Lipschitz条件和线性增长条件下,一类具有依赖时间和状态延迟的随机微分方程解的存在唯一性.  相似文献   

11.
We consider a useful modification of the inexact implicit method with a variable parameter in Wang et al. J Optim Theory 111: 431–443 (2001) for generalized mixed monotone variational inequalities. One of the contributions of the proposed method in this paper is that the restrictions imposed on the variable parameter are weaker than the ones in Wang et al. J Optim Theory 111: 431–443 (2001). Another contribution is that we establish a sufficient and necessary condition for the convergence of the proposed method to a solution of the general mixed monotone variational inequality.  相似文献   

12.
By utilizing the Krasnoselskii's fixed point theorem in cones we obtain some sufficient conditions which guarantee the existence of positive periodic solution for a class of differential equations with state-dependent delays. The results in the papers [1,2] have been improved.  相似文献   

13.
In this paper, we introduce a new class of variational inequalities, which is called the general quasi-variational inequality. We establish the equivalence among the general quasi variational inequality and implicit fixed point problems and the Wiener–Hopf equations. We use this equivalent formulation to discuss the existence of a solution of the general quasi-variational inequality. This equivalent formulation is used to suggest and analyze some iterative algorithms for solving the general quasi-variational inequality. We also discuss the convergence analysis of these iterative methods. Several special cases are also discussed.  相似文献   

14.
We present an approach for the resolution of a class of differential equations with state-dependent delays by the theory of strongly continuous nonlinear semigroups. We show that this class determines a strongly continuous semigroup in a closed subset of C0, 1. We characterize the infinitesimal generator of this semigroup through its domain. Finally, an approximation of the Crandall-Liggett type for the semigroup is obtained in a dense subset of (C, ‖·‖). As far as we know this approach is new in the context of state-dependent delay equations while it is classical in the case of constant delay differential equations.  相似文献   

15.
The systems governed by delay differential equations come up in different fields of science and engineering but often demand the use of non-constant or state-dependent delays. The corresponding model equation is a delay differential equation with state-dependent delay as opposed to the standard models with constant delay. The concept of controllability plays an important role in physics and mathematics. In this paper, first we study the approximate controllability for a class of nonlinear fractional differential equations with state-dependent delays. Then, the result is extended to study the approximate controllability fractional systems with state-dependent delays and resolvent operators. A set of sufficient conditions are established to obtain the required result by employing semigroup theory, fixed point technique and fractional calculus. In particular, the approximate controllability of nonlinear fractional control systems is established under the assumption that the corresponding linear control system is approximately controllable. Also, an example is presented to illustrate the applicability of the obtained theory.  相似文献   

16.
In this paper we propose and analyse numerical methods for the approximation of the solution of Helmholtz transmission problems in the half plane. The problems we deal with arise from the study of some models in photothermal science. The solutions to the problem are represented as single layer potentials and an equivalent system of boundary integral equations is derived. We then give abstract necessary and sufficient conditions for convergence of Petrov–Galerkin discretizations of the boundary integral system and show for three different cases that these conditions are satisfied. We extend the results to other situations not related to thermal science and to non-smooth interfaces. Finally, we propose a simple full discretization of a Petrov–Galerkin scheme with periodic spline spaces and show some numerical experiments.  相似文献   

17.
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

18.
A theory is presented for implicit one-step extrapolation methods for ordinary differential equations. The computational schemes used in such methods are based on the implicit Runge-Kutta methods. An efficient implementation of implicit extrapolation is based on the combined step size and order control. The emphasis is placed on calculating and controlling the global error of the numerical solution. The aim is to achieve the user-prescribed accuracy in an automatic mode (ignoring round-off errors). All the theoretical conclusions of this paper are supported by the numerical results obtained for test problems.  相似文献   

19.
During the iterations of interior point methods symmetric indefinite systems are decomposed by LD̂L T factorization. This step can be performed in a special way where the symmetric indefinite system is transformed to a positive definite one, called the normal equations system. This approach proved to be efficient in most of the cases and numerically reliable, due to the positive definite property. It has been recognized, however, that in case the linear program contains “dense” columns, this approach results in an undesirable fill–in during the computations and the direct factorization of the symmetric indefinite system is more advantageous. The paper describes a new approach to detect cases where the system of normal equations is not preferable for interior point methods and presents a new algorithm for detecting the set of columns which is responsible for the excessive fill–in in the matrix AA T . By solving large–scale linear programming problems we demonstrate that our heuristic is reliable in practice. This work was supported in part by the Hungarian Scientific Research Fund OTKA K60480.  相似文献   

20.
In this paper, we study stability of periodic solutions of a class of nonlinear functional differential equations (FDEs) with state-dependent delays using the method of linearization. We show that a periodic solution of the nonlinear FDE is exponentially stable, if the zero solution of an associated linear periodic linear homogeneous FDE is exponentially stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号