首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The redox-responsive hybrid nanoparticles of P(MACPTS-co-MAGP)@AgNPs is developed for drug delivery and fluorescence monitoring of the drug release by applying the NSET-based strategy.  相似文献   

2.
Silica encapsulation and magnetic properties of FePt nanoparticles   总被引:3,自引:0,他引:3  
Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through an aminopropoxysilane (APS) monolayer and then subsequent condensation of triethoxysilane (TEOS) on FePt particle surface. These well-defined FePt@SiO2 core-shell nanoparticles with narrow size distribution become colloidal in aqueous media, and can thus be used as carrier fluid for biomolecular complexes. In comparison, the scarce hydrophilic nature of oleic acid monolayers on FePt particle surface yields an edgy partial coating of silica when only TEOS is applied for the surface modification. The synthesized core-shell nanoparticles were characterized by direct techniques of high resolution transmission electron microscopy (HRTEM), EDS and indirectly via UV-vis absorption and FTIR studies. The FePt@SiO2 nanoparticles exhibit essential characteristics of superparamagnetic behavior, as investigated by SQUID magnetometry. The blocking temperatures (T(B)) of FePt and FePt@SiO2 (135 and 80 K) were studied using zero field cooled (ZFC)/field cooled (FC) curves.  相似文献   

3.
This study aimed to prepare solid lipid nanoparticles (SLNs) of a hydrophobic drug, tretinoin, by emulsification-ultrasonication method. Solubility of tretinoin in the solid lipids was examined. Effects of process variables were investigated on particle size, polydispersity index (PI), zeta potential (ZP), drug encapsulation efficiency (EE), and drug loading (L) of the SLNs. Shape and surface morphology of the SLNs were investigated by cryogenic field emission scanning electron microscopy (cryo-FESEM). Complete encapsulation of drug in the nanoparticles was checked by cross-polarized light microscopy and differential scanning calorimetry (DSC). Crystallinity of the formulation was analyzed by DSC and powder X-ray diffraction (PXRD). In addition, drug release and stability studies were also performed. The results indicated that 10mg tretinoin was soluble in 0.45±0.07 g Precirol? ATO5 and 0.36±0.06 g Compritol? 888ATO, respectively. Process variables exhibited significant influence in producing SLNs. SLNs with <120 nm size, <0.2 PI, >I30I mV ZP, >75% EE, and ~0.8% L can be produced following the appropriate formulation conditions. Cryo-FESEM study showed spherical particles with smooth surface. Cross-polarized light microscopy study revealed that drug crystals in the external aqueous phase were absent when the SLNs were prepared at ≤0.05% drug concentration. DSC and PXRD studies indicated complete drug encapsulation within the nanoparticle matrix as amorphous form. The drug release study demonstrated sustained/prolonged drug release from the SLNs. Furthermore, tretinoin-loaded SLNs were stable for 3 months at 4°C. Hence, the developed SLNs can be used as drug carrier for sustained/prolonged drug release and/or to improve oral absorption/bioavailability.  相似文献   

4.
Grafting of C-6, C-16 and C-18 alkyl chains onto the hydrophilic Mn-Anderson clusters (compounds 2-4) has been achieved. Exchange of the tetrabutyl ammonium (TBA) with dimethyldioctadecyl ammonium (DMDOA) results in the formation of new polyoxometalate (POM) assemblies (compounds 5-6), in which the POM cores are covalently functionalized by hydrophilic alkyl-chains and enclosed by surfactant of DMDOABr. As a result, we have been able to design and synthesize POM-containing hydrophobic materials beyond surfactant encapsulation. In solid state, scanning electron and transmission electron microscopy (SEM and TEM) studies of the TBA salts of compounds 3 and 4 show highly ordered, uniform, reproducible assemblies with unique segmented rodlike morphology. SEM and TEM studies of the DMDOA salts of compounds 5 and 6 show that they form spherical and sea urchin 3D objects in different solvent systems. In solution, the physical properties of compound 5 and 6 (combination of surfactant-encapsulated cluster (SEC) and surface-grafted cluster (SGC)) show a liquid-to-gel phase transition in pure chloroform below 0 degrees C, which are much lower than other reported SECs. By utilizing light scattering measurements, the nanoparticle size for compounds 5 and 6 were measured at 5 degrees C and 30 degrees C, respectively. Other physical properties including differential scanning calorimetry have been reported.  相似文献   

5.
We report an organic-inorganic hybrid core-shell nanomaterial obtained by conjugation of an amphiphilic monomethoxy-poly(ethylene glycol)-b-poly(epsilon-caprolactone) diblock copolymer to hydroxylated boron nitride nanotubes (BNNTs). The extent of copolymer grafting reached 64% w/w, an exceptionally high value. The hybrid materials exhibit excellent physical stability in water and an outstanding loading capacity (31.3% w/w) for curcumin, a hydrophobic drug. Moreover, they present good compatibility with the Caco2 cell line, a model of intestinal epithelium. Our findings demonstrate the potential of multifunctional hybrid BNNTs to serve as a platform for complex amphiphilic nanoparticle architectures with improved features.  相似文献   

6.
From a library of glyco-lipid mimics with muconic amide as the spacer, we found that 1, a glyco-lipid that has N-acetyl glucosamine and methyl cyclohexyl groups as its hydrophilic head and hydrophobic tails, respectively, formed a stable hydrogel (0.05 wt %) through hierarchical self-assembly of the lipid molecules into supramolecular nanofibers. The formation of the supramolecular hydrogel was verified by rheological measurements, and the supramolecular nanofiber was characterized as the structural element by transmission electron microscopy and atomic force microscopy observations. Absorption and circular dichroism spectroscopic measurements revealed that the muconic amide moieties of 1 are arranged in a helical, stacked fashion in the self-assembled nanofibers. Moreover, we unexpectedly found that the homogeneous distribution of the supramolecular nanofibers of 1 was greatly facilitated by the addition of polystyrene nanobeads (100-500 nm in diameter), as evaluated by confocal laser scanning microscopic observations. It is interesting that the obtained supramolecular hybrid matrix can efficiently encapsulate and distribute live Jurkat cells in three dimensions under physiological conditions. This supramolecular hybrid matrix is intriguing as a unique biomaterial.  相似文献   

7.
仝维鋆 《高分子科学》2012,30(5):719-726
To improve the colloidal stability of bovine serum albumin(BSA) nanoparticles(NPs) in diverse mediums, poly(allylamine hydrochloride)(PAH)/sodium poly(4-styrene sulfonate)(PSS) multilayers and poly(allylamine hydrochloride)-graft-poly(ethylene glycol)(PAH-g-PEG) coating were coated on the surface of BSA NPs.Stabilities of the BSA NPs in diverse mediums with different surfaces were detected by dynamic light scattering(DLS).Multilayers and PAH-g-PEG coated BSA NPs can be well dispersed in various mediums with a narrow polydispersity index(PDI).The BSA NPs with the highest surface density of PEG show the best stability.The multilayers and PAH-g-PEG coating do not deter the pH-dependent loading and release property of BSA NPs.At pH 9,the encapsulation efficiency of doxorubicin reaches almost 99%,and the release rate at pH 5.5 is significantly higher than that at pH 7.4.  相似文献   

8.
The drug delivery properties of a series of poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) micellar-like nanoparticles have been assessed in terms of their colloidal stability and their ability to incorporate a water soluble drug. These studies have focused on a range of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). In aqueous media, these copolymers formed micellar-like assemblies following precipitation from water miscible solvents. There was a controlled increase in the particle size as the molecular weight of the PLA block was increased. The characteristics of the PEG corona were also highly dependent on the PLA moiety. Copolymers with a low molecular weight PLA block (3–15 kDa) formed highly colloidally stable dispersions, with a complete PEG surface coverage. However, increasing the molecular weight of the PLA block resulted in significantly less colloidally stable nanoparticle dispersions, which flocculated in solvents that were significantly better than θ-solvents for the stabilising PEG chains. This can be attributed to a reduced PEG surface coverage and the probable presence of naked PLA ‘patches’ on the particle surface. These larger PLA–PEG nanoparticles (30:5–110:5) were found to be stabilised in the presence of serum components, which are thought to adsorb into the gaps on the particle surface and prevent flocculation. All of the dispersions were found to be stable under physiological conditions and therefore suitable for in vivo administration. A reasonable loading (3.1% w/w) of the micellar-like PLA–PEG 30:5 nanoparticles with the water soluble drug procaine hydrochloride was achieved. The incorporated drug was found to have no effect on the nanoparticle structure or recovery, which can be attributed to the micellar character of these assemblies and the presence of the stabilising PEG chains.  相似文献   

9.
In this work small angle X-ray scattering (SAXS) studies on the interaction of the phenothiazine trifluoperazine (TFP, 2-10 mM), a cationic drug, with micelles of the zwitterionic surfactant 3-(N-hexadecyl-N,N-dimethylammonium) propane sulfonate (HPS, 30 mM) and the anionic surfactant sodium dodecyl sulfate (SDS, 40 mM) at pH 4.0, 7.0, and 9.0 are reported. The data were analyzed through the modeling of the micellar form factor and interference function, as well as by means of the distance distribution function p(r). For anionic micelles (SDS), the results evidence a micellar shape transformation from prolate ellipsoid to cylinder accompanied by micellar growth and surface charge screening as the molar ratio TFP:SDS increases in the complex for all values of pH. Small ellipsoids with axial ratio nu=1.5+/-0.1 (long dimension of 60 A) grow and reassemble into cylinder-like aggregates upon 5 mM drug incorporation (1 TFP:8 SDS monomers) with a decrease of the micelle surface charge. At 10 mM TFP:40 mM SDS cylindrical micelles are totally screened with an axial ratio nu approximately 4 (long dimension approximately 140 A at pH 7.0 and 9.0). However, at pH 4.0, where the drug is partially diprotonated, 10 mM TFP incorporation gives rise to a huge increase in micellar size, resulting in micelles at least 400 A long, without altering the intramicellar core. For zwitterionic micelles (HPS), the results have shown that the aggregates also resemble small prolate ellipsoids with averaged axial ratio approximately nu=1.6+/-0.1. Under TFP addition, both the paraffinic radius and the micellar size show a slight decrease, giving evidence that the micellar hydrophobic core may be affected by phenothiazine incorporation rather than that observed for the SDS/TFP comicelle. Therefore, our results demonstrate that the axial ratio and shape evolution of the surfactant:TFP complex are both dependent on surfactant surface-charge and drug:surfactant molar ratio. The results are compared with those recently obtained for another phenothiazine drug, chlorpromazine (CPZ), in SDS and HPS micelles (Caetano, Gelamo, Tabak, and Itri, J. Colloid Interface Science 248 (2002) 149).  相似文献   

10.
For many years, lipid nanoparticles (LNPs) have been used as delivery vehicles for various payloads (especially various oligonucleotides and mRNA), finding numerous applications in drug and vaccine development. LNP stability and bilayer fluidity are determined by the identities and the amounts of the various lipids employed in the formulation and LNP efficacy is determined in large part by the lipid composition which usually contains a cationic lipid, a PEG-lipid conjugate, cholesterol, and a zwitterionic helper phospholipid. Analytical methods developed for LNP characterization must be able to determine not only the identity and content of each individual lipid component (i.e., the parent lipids), but also the associated impurities and degradants. In this work, we describe an efficient and sensitive reversed-phase chromatographic method with charged aerosol detection (CAD) suitable for this purpose. Sample preparation diluent and mobile phase pH conditions are critical and have been optimized for the lipids of interest. This method was validated for its linearity, accuracy, precision, and specificity for lipid analysis to support process and formulation development for new drugs and vaccines.  相似文献   

11.
Hybrid materials of CsHSO4 and silica nanoparticles were prepared by mechanical milling, and hydrogen bond states and proton dynamics were studied by means of 1H solid-state NMR. 1H MAS NMR spectra demonstrated that three types of domains are present in the milled materials. Domain A has hydrogen bond states similar to those in the bulk compound. With respect to hydrogen bonds, domains A-II and A-III are similar to phases II and III of CsHSO4, respectively. Protons in domain A-II undergo translational diffusion, and the diffusion is faster than in phase II of bulk CsHSO4. Domain B is originated by mixing of CsHSO4 with silica nanoparticles, presumably locating at the boundary region. Protons in this domain also undergo translational diffusion. The motional rate is faster than in phase II of bulk CsHSO4 but is slower than in domain A-II. In domain C protons are contained as OH groups on the surface of silica nanoparticles. Protons are immobile in this domain.  相似文献   

12.
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) coated with human serum albumin (HSA) were fabricated for formulating nevirapine (NVP). Here, NLCs contained low-melting-point oleic acid (OA) in the internal lipid phase. The results revealed that the two nanoparticles were uniformly distributed with the average diameter ranging from 145 to 180 nm. The surface HSA neutralized the positive charge of dimethyldioctadecyl ammonium bromide (DODAB) on SLNs and NLCs and reduced their zeta potential. In a fixed ratio of solid lipids, SLNs entrapped more NVP than NLCs. The incorporation of OA also reduced the thermal resistance of NLCs and accelerated the release of NVP from the nanocarriers. When incubated with DODAB-stabilized SLNs, the viability of human brain-microvascular endothelial cells (HBMECs) reduced. However, the surface HSA increased the viability of HBMECs about 10% when the concentration of SLNs was higher than 0.8 mg/mL. HSA-grafted SLNs and NLCs can be effective formulations in the delivery of NVP for viral therapy.  相似文献   

13.
Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO2, Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol–gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO2 as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH+) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic–organic hybrid material that can be used to promote the oxidation of biomolecules was obtained.  相似文献   

14.
Carbon nanoparticles between 10 and 50 nm in diameter and carbon shells of various thickness around silver nanoparticles were synthesized by the hydrothermal reaction of fructose. The effect of the carbon shells on the plasmon resonance of the silver nanoparticles and their stability in sodium chloride solutions was investigated. The shell thickness can be adjusted to have insignificant damping of the plasmon resonance and provide stabilization of the particles in solutions with high ionic strength. Hydrazine–carbonyl cross-linking reactions were performed to link fluorescent dye molecules to carbonyl groups on the carbon shell surface.  相似文献   

15.
在氨水溶液中进行Fe+2和Fe+3离子共沉淀并水热处理后制得磁性纳米颗粒Fe3O4,通过戊二醛活化将纤维素酶固定于其上。采用基于响应面法的Box-Behnken法(BBD)优化了制备条件,如磁性纳米颗粒浓度、戊二醛浓度、酶浓度和交联时间。 BBD分析结果表明,用实验数据可合理调节二次模型。利用生成的基于统计数据的等高线评价了响应面的变化,以理解纳米颗粒和酶活性之间的关系。运用扫描电镜、X射线衍射和红外光谱表征了纳米颗粒上酶的尺寸、结构、形貌和结合情况。采用诸如pH值、温度、重复使用性和存储能力分析了固定化纤维素酶的活性和稳定性。发现固定后的纤维素酶表现出更好的稳定性和活性。  相似文献   

16.
UVA exposure induces DNA damage that could result in skin carcinogenesis. Antioxidants are usually employed as protective agents to avoid this problem: in particular, both β-carotene and α-tocopherol can protect the skin against UVA-induced damage. It is well known that the photochemical instability of these compounds has been a limiting factor for their applications to protect skin. In this study, stearyl ferulate-based solid lipid nanoparticles (SF-SLNs), as vehicles for β-carotene and α-tocopherol, were formulated to improve the stability of these compounds. The SF-SLNs were characterized for entrapment efficiency, size and shape together with their cytotoxicity and capability to inhibit lipid peroxidation. After treatment with a pro-oxidant and/or exposition to sunlight the antioxidants entrapped in SF-SLNs were extremely stable. The results highlighted how SF-SLNs represent a suitable vehicle for β-carotene and α-tocopherol stabilizing and protecting them from degradation. A dermatological formulation in order to prevent skin damages is, therefore, suggested.  相似文献   

17.
Increasing complexity and diversity of polymersomes and their compartments is a key issue for mimicking cellular functions and protocells. Thus, new challenges arise in terms of achieving tunable membrane permeability and combining it with control over the membrane diffusion process, and thus enabling a localized and dynamic control of functionality and docking possibilities within or on the surface of polymeric compartments. This study reports the concept of polymersomes with pH‐tunable membrane permeability for controlling sequential docking and undocking processes of small molecules and nanometer‐sized protein mimics selectively on the inside and outside of the polymersome membrane as a further step toward the design of intelligent multifunctional compartments for use in synthetic biology and as protocells. Host–guest interactions between adamantane and β‐cyclodextrin as well as noncovalent interactions between poly(ethylene glycol) tails and β‐cyclodextrin are used to achieve selective and dynamic functionalization of the inner and outer spheres of the polymersome membrane.  相似文献   

18.
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.  相似文献   

19.
Bimetallic Au–Pd nanoparticles were synthesized under high-energy irradiation fields (1.17 and 1.33 MeV γ-rays, 9 MeV electrons, and 1.6 GeV C ions) from solutions containing Au3+ and Pd2+ and cationic surfactant (sodium dodecyl sulfate). Particles synthesized by the irradiation were observed using conventional transmission electron microscope (TEM) and annular dark-field scanning transmission electron microscopy (ADF-STEM). The particles synthesized by γ-rays and C ion irradiation exhibit core–shell structure with a Au-core and a Pd-shell. The dependence of the size distribution of nanoparticles on the dose rate is discussed.  相似文献   

20.
Gold nanoparticles (Au NPs), which are extremely useful materials for imaging and photothermal therapy, typically require a drug delivery system to transport them to the affected tissue and into the cells. Since liposomes are approved as drug carriers, complexes of liposomes with Au NPs were considered ideal solutions to deliver Au NPs to the target site in vivo. In this study, we prepared complexes of various liposomes with Au NPs via physical absorption and characterized them. The time dependency of the surface plasmon resonance of this complex, which is a unique property of Au NPs, shows that the liposomes promote the formation of stable dispersions of Au NPs under isotonic conditions, even though intact Au NPs aggregate immediately. From a release assay of calcein from liposomes and transmission electron microscopy analysis, the Au NPs were complexed with liposomes without membrane disruption. These complexes could be formed by using cationic liposomes and polyethylene glycol-modified liposomes, as well as by using phosphatidylcholine liposomes, which are useful for drug and gene delivery. We proposed this kind of complex as a nanomedicine with diagnostic and therapeutic ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号