首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction. It is shown that, in the absence of the on-site interaction, the system possesses the SU(2) symmetry arising from the time reversal symmetry. The influence of the on-site interaction on the symmetry depends on the topology of the networks: The SU(2) symmetry is shown to be the spin rotation symmetry of a simply-connected lattice even in the presence of the Hubbard interaction. On the contrary, the on-site interaction breaks the SU(2) symmetry of a multi-connected lattice. This fact indicates that a discrete spin-orbit coupled system has exclusive features from its counterpart in a continuous system. The obtained rigorous result is illustrated by a simple ring system.  相似文献   

2.
3.
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.  相似文献   

4.
Theories in which a discrete left-right symmetry is spontaneously broken are expected to lead to the formation of vacuum domain walls. Although the existence of such walls at the present epoch is observationally excluded, we show that such theories are allowed if the discrete symmetry is embedded in a larger continuous symmetry, e.g., SO(10), spontaneously broken at higher temperatures. In this case vacuum strings are formed when the larger symmetry is broken, and these become connected by domain walls when the discrete symmetry is broken. The bounded domain walls tend to shrink, and the system of strings and domain walls decays before its energy density becomes comparable to that of matter. In particular, our arguments allow the symmetry breaking pattern SO(10) → … S[O(6)×O(4)] → SU(3)×SU(2)×U(1) which has been proposed by others.  相似文献   

5.
The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.  相似文献   

6.
Peccei–Quinn (PQ) mechanism based on a chiral global U(1) symmetry is considered to be a simple and elegant solution for strong CP problem. The fact that the mechanism could be experimentally examined through the axion search makes it much more interesting and recently it causes a lot of attention again. However, it is also known that the mechanism is annoyed by two serious problems, that is, a domain wall problem and goodness of global symmetry. Any global symmetry is considered not to be exact due to the quantum effect of gravity. In this paper, we consider a solution to these problems, in which quark mass hierarchy and mixing, neutrino mass generation and existence of dark matter are closely related. In our solution, PQ symmetry is assumed to be induced through symmetry breaking at an intermediate scale of a local U(1) symmetry, and a global U(1) symmetry which plays a role of Froggatt–Nielsen symmetry . In the lepton sector, a remnant of the PQ symmetry controls neutrino mass generation and dark matter existence.  相似文献   

7.
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics.Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices.The even-parity symmetries impose strict constraints on the scattering coefficients:the time-reversal(C and K) symmetries protect the symmetric transmission or reflection;the pseudo-Hermiticity(Q symmetry) or the inversion(P) symmetry protects the symmetric transmission and reflection.For the inversion-combined time-reversal symmetries,the symmetric features on the transmission and reflection interchange.The odd-parity symmetries including the particle-hole symmetry,chiral symmetry,and sublattice symmetry cannot ensure the scattering to be symmetric.These guiding principles are valid for both Hermitian and non-Hermitian linear systems.Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.  相似文献   

8.
A mechanism of double protection of the Higgs potential, by supersymmetry and by a global symmetry, is investigated in a class of supersymmetric models with the SU(3)cxSU(3)wxU(1)x gauge symmetry. The electroweak symmetry can be then broken with no fine-tuning at all.  相似文献   

9.
We review the physical concepts supporting the notion of an approximate hadron symmetry with special emphasis on the Nambu-Goldstone realizations of chiral SU (2) × SU (2) and SU (3) × SU (3). We stress the role of perturbation theory in the symmetry breaking as the technical instrument to connect broken symmetries with experiment. This is an alternate to the treatments that stress PCAC and current algebra. We find that chiral SU (2) × SU (2) is a good hadron symmetry to within 7% making it the best hadron symmetry after isotopic symmetry. The nonrenormalization theorem, Σ-terms, Kl3 decay, η→3π decay, the Goldberger-Treiman relation and many other specific processes and their relation to approximate chiral symmetry are discussed.  相似文献   

10.
Dynamics of convergence and reflection of the toroidal (ring-shaped) shock wave (SW) in the torus plane and in the plane passing through its symmetry axis is experimentally studied. It is shown that such an SW is significantly amplified near the torus symmetry axis. The maximum amplification of the toroidal SW near its symmetry axis is estimated.  相似文献   

11.
It is shown here that real crystals besides their crystallographic symmetry (230 space groups) display another kind of symmetry called in this paper — the dynamic symmetry (1651 Shubnikov groups). The dynamic symmetry manifests itself during transformation by the crystal structure of quantities whose symmetry has two-color operations.An example is given of application of dynamic symmetry for interpretation of phenomenon of forbidden reflexions in an X-ray pattern of ethylidene-N, N′-diacetamide crystals.  相似文献   

12.
碳纳米管中的群论及一系列新点群   总被引:3,自引:0,他引:3       下载免费PDF全文
杨铮  施毅  刘法  张荣  郑有炓 《物理学报》2004,53(12):4299-4302
在讨论了碳纳米管的几何结构的基础上,对齿型和椅型碳纳米管的对称性进行了分析并将这些对称元进行了抽象和总结.对齿型和椅型碳纳米管的对称元所属的群Dnh点群进行了讨论. 关键词: 点群 碳纳米管 几何结构 对称性  相似文献   

13.
We study thermodynamics of strongly coupled lattice QCD with two colors of staggered fermions in 2+1 dimensions. The partition function of this model can be written elegantly as a statistical mechanics of dimers and baryon loops. The model is invariant under an SO(3) x U(1) symmetry. At low temperatures, we find evidence for superfluidity in the U(1) symmetry sector while the SO(3) symmetry remains unbroken. The finite temperature phase transition appears to belong to the Kosterlitz-Thouless universality class, but the superfluid density jump rho(s) (T(c)) at the critical temperature T(c) is anomalously higher than the normal value of 2T(c)/pi. We show that, by adding a small SO(3) symmetry breaking term to the model, the superfluid density jump returns to its normal value, implying that the extra symmetry causes anomalous superfluid behavior. Our results may be of interest to researchers studying superfluidity in spin-1 systems.  相似文献   

14.
We propose "vector manifestation" (VM) of the Wigner realization of chiral symmetry in which the symmetry is restored at the critical point by the massless degenerate pion (and its flavor partners) and the rho meson (and its flavor partners) as the chiral partner, in sharp contrast to the traditional manifestation á la the linear sigma model where the symmetry is restored by the degenerate pion and the scalar meson. The application to the chiral phase transition of large N(f) QCD is performed using the hidden local symmetry Lagrangian. Combined with the Wilsonian matching proposed recently, VM determines the critical number of massless flavors N(f) approximately equal to 5 without much ambiguity.  相似文献   

15.
Within the framework of the Becchi–Rouet–Stora–Tyutin (BRST) formalism, we demonstrate the existence of the novel off-shell nilpotent (anti-)dual-BRST symmetries in the context of a six (5+1)-dimensional (6D) free Abelian 3-form gauge theory. Under these local and continuous symmetry transformations, the total gauge-fixing term of the Lagrangian density remains invariant. This observation should be contrasted with the off-shell nilpotent (anti-)BRST symmetry transformations, under which, the total kinetic term of the theory remains invariant. The anticommutator of the above nilpotent (anti-)BRST and (anti-)dual-BRST transformations leads to the derivation of a bosonic symmetry in the theory. There exists a discrete symmetry transformation in the theory which provides a thread of connection between the nilpotent (anti-)BRST and (anti-)dual-BRST transformations. This theory is endowed with a ghost-scale symmetry, too. We discuss the algebra of these symmetry transformations and show that the structure of the algebra is reminiscent of the algebra of de Rham cohomological operators of differential geometry.  相似文献   

16.
The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.  相似文献   

17.
An SO(14) gauge theory with a spinor representation is presented as an extension of the flavor-unifying SU(7) model. The global Γ symmetry in the SU(7) theory becomes a local gauge symmetry as a part of the SO(14). The quarks are classified by 3 groups and the leptons by 2 groups according to the Γ quantum number. Three patterns of spontaneous symmetry breaking are considered, and only one of them is shown to be a viable choice.  相似文献   

18.
The (infinite-dimensional) supersymmetry algebra in 1 + 1 space-time dimension is extended in order to incorporate, in a non-trivial way, an internal symmetry. It turns out that this requirement implies that the internal symmetry is realized as a local gauge symmetry. Moreover, it is possible to construct string-like models with this underlying symmetry, where colour confinement is exactly realized as a consequence of the gauge constraints.  相似文献   

19.
The symmetry of magnetic quantum tunneling has been studied in the prototype single molecule magnet Mn12-acetate using a micro-Hall effect magnetometer and superconducting high field vector magnet system. An average crystal fourfold symmetry is shown to be due to local molecular environments of twofold symmetry that are rotated by 90 degrees with respect to one another, confirming that disorder which lowers the molecule symmetry is as important to magnetic quantum tunneling. We have studied a subset of these lower (twofold) site symmetry molecules and present evidence for a Berry phase effect consistent with a local twofold symmetry.  相似文献   

20.
The null-plane dynamics of hydrogen-like atoms is studied in approximations depending on c, the velocity of light, being large. Neglecting terms in the Hamiltonian of order c?3 (relative to electron rest energy) a symmetry SU (2)W appears which is analogous to the SU (6)W of hadron classification. This symmetry, if accurate, would dictate zero ground state magnetic moment. The symmetry is broken by terms of third order, which can, however, be transformed a way by the appropriate approximation to the Melosh transformation. There then emerges a better symmetry, SU (2)M, broken only at fourth order. The ground state magnetic moment acquires its usual non-relativistic value. The symmetry SU (2)M corresponds to a subgroup of a symmetry [U (2) × U (2)]FW which appears in the old Foldy-Wouthuysen approach when spin-orbit coupling is neglected. As well as “current” and “constituent” pictures, “classification” pictures are distinguished; it is to one of the latter that the Melosh transformation transforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号