首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dissolution property of a poorly water-soluble drug, flurbiprofen (FP), was improved by a novel dry coating method using a planetary ball mill. Several mixtures composed of water-soluble additives (D-mannitol, lactose, and erythritol), light anhydrous silicic acid, and flurbiprofen were prepared. These mixtures and several starches were co-ground in a planetary ball mill, and the surface of the starches was dry coated with the mixtures. The size, appearance, yield, and drug dissolution property of the dry coated preparations were evaluated, and the optimal formulation which improved the dissolution property of poorly water-soluble flurbiprofen was determined. The dissolution rate of FP was increased by dry coating of the surface of starches with microparticulated FP. It was further increased by co-grinding of FP, starch, and a water-soluble additive, or dry coating of the starch surface with microparticulated FP and light anhydrous silicic acid, as a glidant. These co-ground and dry coated preparations could be recovered from the pot of the planetary ball mill readily without adhesion to the inside wall of the pot. These are considered to be novel, industrially applicable methods for improving the dissolution rate of poorly water-soluble drugs.  相似文献   

3.
4.
A new benzofuroquinoline derivative, 3,9-bis(N,N-dimethylcarbamoyloxy)-5H-benzofuro[3,2-c]quinoli ne-6-one (KCA-098), shows poor oral absorption due to practical insolubility in water. In this study, a co-grinding technique employing a water-soluble polymer was used for improvement of the dissolution rate of KCA-098. Powder X-ray diffraction patterns and IR spectra of KCA-098 showed the conversion of the drug from a crystal state to an amorphous state by grinding with a polymer such as hydroxypropyl cellulose (HPC-SL) or polyvinylpyrrolidone (PVP K30). The particle size of KCA-098 was remarkably reduced to a submicron size by grinding with HPC-SL. The co-ground mixture with HPC-SL showed a rapid dissolution rate and maintained supersaturation for more than 1 h. On the other hand, the co-ground mixture with PVP K30 showed rapid dissolution and supersaturation for a shorter period. These data suggest that the rapid dissolution rate was obtained by the conversion of the drug particles from a crystal to amorphous state by grinding with water-soluble polymers and that a reduction in particle size to the submicron level led to the maintenance of supersaturation due to good dispersion.  相似文献   

5.
Poorly water-soluble drugs N-5159, griseofulvin (GFV), glibenclamide (GBM) and nifedipine (NFP) were ground in a dry process with polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). Different crystallinity behavior of each drug during grinding was shown in the ternary Drug/PVP/SDS system. However, when each ternary Drug/PVP/SDS ground mixture was added to distilled water, crystalline nanoparticles which were 200 nm or less in size were formed and had excellent stability. Zeta potential measurement suggested that the nanoparticles had a structure where SDS was adsorbed onto the particles that were formed by the adsorption of PVP on the surface of drug crystals. Stable existence of crystalline nanoparticles was attributable to the inhibition of aggregation caused by the adsorption of PVP and SDS on the surface of drug crystals. Furthermore, the electrostatic repulsion due to the negative charge of SDS on a shell of nanoparticles could be assumed to contribute to the stable dispersion.  相似文献   

6.
Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes   总被引:1,自引:0,他引:1  
Fullerenes are known for their unique electronic properties including high electron affinity. Although use of fullerenes for scavenging photo-generated electrons from titanium dioxide particles has been demonstrated, no attempts have been made to utilize the unique properties of fullerenes to increase the efficacy of photocatalysis. The present study has demonstrated that a mixture of water-soluble polyhydroxy fullerenes (PHF) and titanium dioxide (anatase polymorph) enhances photocatalytic degradation of organic dye. The PHF molecules adsorbed to the surface of titanium dioxide due to electrostatic forces, with adsorption density being higher at lower pH values. The surface coverage of titanium dioxide nanoparticles by PHF molecules determined the extent of enhancement, with an optimum dosed weight ratio of PHF to titanium dioxide at 0.001. Hydroxylation and concomitant solubilization of fullerenes allow their unique electronic properties to be harnessed for photocatalysis.  相似文献   

7.
The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10?min of the SD with a 1?:?3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.  相似文献   

8.
A novel ultra-cryo milling micronization technique for pharmaceutical powders using liquid nitrogen (LN2 milling) was used to grind phenytoin, a poorly water-soluble drug, to improve its dissolution rate. LN2 milling produced particles that were much finer and more uniform in size and shape than particles produced by jet milling. However, the dissolution rate of LN2-milled phenytoin was the same as that of unground phenytoin due to agglomeration of the submicron particles. To overcome this, phenytoin was co-ground with polyvinylpyrrolidone (PVP). The dissolution rate of co-ground phenytoin was much higher than that of original phenytoin, single-ground phenytoin, a physical mixture of phenytoin and PVP, or jet-milled phenytoin. X-Ray diffraction showed that the crystalline state of mixtures co-ground by LN2 milling remained unchanged. The equivalent improvement in dissolution, whether phenytoin was co-ground or separately ground and then mixed with PVP, suggested that even when co-ground, the grinding of PVP and phenytoin occurs essentially independently. Mixing original PVP with ground phenytoin provided a slight improvement in dissolution, indicating that the particle size of PVP is important for improving dissolution. When mixed with ground phenytoin, PVP ground by LN2 milling aided the wettability and dispersion of phenytoin, enhancing utilization of the large surface area of ground phenytoin. Co-grinding phenytoin with other excipients such as Eudragit L100, hypromellose, hypromellose acetate-succinate, microcrystalline cellulose, hydroxypropylcellulose and carboxymethyl cellulose also improved the dissolution profile, indicating an ultra-cryo milling and co-grinding technique in liquid nitrogen has a broad applicability of the dissolution enhancement of phenytoin.  相似文献   

9.
Eudragit® E/HCl salt (E–SD) displays a good antireprecipitation effect on solid dispersion formulations of poorly water-soluble drugs. To elucidate the mechanism underlying the antireprecipitation effect of E–SD, a study on supersaturation was conducted using a dissolution test method with test fluids at varying pH and ionic strength values. Both pH and ionic strength of the test fluid were shown to influence the antireprecipitation effect of E–SD; a strong antireprecipitation effect was observed at a neutral pH (pH?6~7) and an ionic strength of 0.1 to 1.0. To investigate E–SD in its dissolved state in each test fluid, fluorescence measurement using pyrene as a probe molecule and dynamic light-scattering (DLS) measurement were conducted. The total fluorescence intensity of pyrene increased with increasing E–SD concentrations. Further, small nanoparticles were observed using DLS measurement. These results suggest that E–SD may form a micelle-like structure in the dissolved test fluid.  相似文献   

10.
A model of the dissolution and interaction of two poorly soluble substances with the formation of a readily soluble product was developed. The kinetic characteristics of the process were described for the dissolution of two solid substances in a planar slit between them filled with a solvent and for the dissolution of intensely stirred suspension of particles of two substances.  相似文献   

11.
The permeabilities of several water-soluble drugs through excised hairless rat skin from their aqueous suspensions were investigated by using newly designed two-chamber diffusion cells. Disodium cromoglycate, diclofenac sodium, dopamine hydrochloride, isoproterenol hydrochloride, diltiazem hydrochloride and papaverine hydrochloride were selected as water-soluble drugs. Indomethacin, a lipophilic drug, and deuterium oxide (D2O) were used for comparison. The skin permeability coefficients of these water-soluble drugs were 100--1000 times lower than that of indomethacin. Since these drugs have high solubility in the donor solution (distilled water or lactate buffer), however, the skin permeation rates, which are in general proportional to the product of skin permeability coefficient and solubility of drugs in the drug-donor compartment, were comparable to or higher than that of indomethacin (1.7 micrograms/cm2/h): the skin permeation rate of dopamine hydrochloride (458 micrograms/cm2/h) was about 300 times higher than that of indomethacin. The water-soluble drugs with lower molecular weight and higher solubility in water showed higher skin permeation rates. These results suggest that some water-soluble drugs with low molecular weight and high solubility in water might be good candidates for transdermal drug delivery.  相似文献   

12.
We evaluated the effect of an electron donor on photogelation of photocurable gelatin, which is gelatin partially derivatized with eosin (eosin–gelatin). As an electron donor, ascorbic acid, 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), and three kinds of radical polymerized amines such as poly(N,N-dimethylacrylamide-co-2-(N,N-dimethylamino)ethyl methacrylate) (poly(DMAAm-co-DMAEMA)), poly(N,N-dimethylacrylamide-co-3-(N,N-dimethylamino)propyl acrylamide) (poly(DMAAm-co-DMAPAAm)), and poly(3-(N,N-dimethylamino)propyl acrylamide) (polyDMAPAAm) were examined. Upon photo irradiation at the wavelength ranging from 400 to 520 nm with low illumination intensity (7.7 × 103 lx), no gel was obtained from 20 wt.% of a viscous aqueous solution of the eosin–gelatin even by adding with ascorbic acid. Whereas in the presence of monomeric amine (DMAEMA, 3.0 wt.%), gel formation occurred by radical recombination between eosin groups incorporated into the gelatin. When the polymeric amines were added to the eosin–gelatin solution, gelation was markedly enhanced due to cross-linking of gelatins through polymeric amines in addition to direct bonding between gelatins. An increase in amine unit content in the polymeric amines resulted in increased gel yield and reduced swelling degree of water. In the presence of polyDMAPAAm, almost all gelatins were converted relatively rigid hydrogel. Application for a topical hemostatic glue was preliminary performed in rat injured model. A rat liver injured in laparotomy was coated with the aqueous eosin–gelatin solution containing polyDMAPAAm. Upon irradiation, the solution was immediately converted to a swollen gel, which was tightly adhered to the liver tissue and concomitantly hemostasis was completed with little tissue damage.  相似文献   

13.
The aim of this study was to develop pellet formulations that could be used to improve the dissolution and bioavailability of a poorly water-soluble model drug, cisapride. Six different types of pellets were prepared by coating sugar spheres in a fluidized bed coater. When the sugar spheres were single layered containing cisapride and solubilizer such as polysorbate 80, the resulting pellets provided an instant release of cisapride in the simulated gastric fluid. Dissolution tests carried out in the simulated intestinal fluid showed that there were negligible amounts of cisapride released, regardless of the pellet formulation. To succeed in attaining dissolution and the sustained release of cisapride at a neural pH, the single layered pellets were coated again with a coating suspension containing Eudragit RS 30D and L 30D. Scanning electron microscopy revealed that the dual layered pellets had a crack-free and spherical surface. Interestingly, the dual layered pellets provided the sustained release of cisapride in both the simulated gastric and intestinal fluids. The composition and components of the dual layers were found to be key parameters affecting the pattern of cisapride dissolution. Significant improvement in the bioavailability of cisapride was achieved when the dual layered pellets were administered orally to dogs. Overall, these results suggest that the dual layered pellets have potential as a sustained release dosage form for poorly water-soluble drugs.  相似文献   

14.
Incorporation of water-soluble drugs in PLGA microspheres   总被引:1,自引:0,他引:1  
Poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran, as a model of water-soluble drugs, were prepared from w1/o/w2 emulsions by using a microhomogenizer and a solvent evaporation method. Effects of preparation conditions, such as, concentration of poly(vinyl alcohol) (PVA) in w2 phase, viscosity of inner soluble water phase, volume ratio of oil phase to w1 phase in primary emulsion, PLGA concentration in oil phase, and molecular weight or composition of PLGA, upon the properties of PLGA microspheres containing water-soluble drugs were examined. Concentration of poly(vinyl alcohol) (PVA), the dispersant dissolved in w2 phase of secondary emulsion did not show any effects on the final particle size. On the other hand, volume ratio of oil phase to water one in primary emulsion affected the final particle size, which seemed to be related to the local PLGA concentration in w1/o emulsions. That is, the particle size increased as the volume ratio of w1 phase against oil phase, w1/o (v/v), increased. The loading efficiency, however, was not affected by the volume ratio of w1/o (v/v), but affected by blue dextran concentration in w1 phase. Higher loading efficiency was observed in PLGA microspheres prepared from w1 phase containing lower concentration of blue dextran. Blue dextran solution (inner water phase) with the lower viscosity may result in the lower leakage ratio of blue dextran during the preparation procedure. Increases in concentration and molecular weight of PLGA made particle size larger.  相似文献   

15.
Dissolution processes play an important role in marble weathering. Investigation of the dissolution kinetics of powdered Pentelic marble, a calcitic natural stone, showed that the rates measured at constant undersaturation decreased with time. It was found that the rate of dissolution decreased sharply to about 50% of the initial value before 5% of the initially suspended powder was dissolved. Past a dissolution extent corresponding to 25% with respect to the suspended solid, the rates of dissolution at the same constant undersaturation reached a stable value corresponding to 20-25% of the initial rate measured. The reduction in the rates of dissolution up to 25% of mass loss was in agreement with the reduction in the total surface area exposed to the solution, suggesting a dependence of the rate on the number of active sites on the surface of the dissolving material. The decrease in the dissolution rates did not depend on the undersaturation of the solution or on the physical characteristics of the particles such as specific surface area, porosity, and particle size distribution. Equal mass losses, with respect to the initially suspended solid, of different samples exhibited the same relative decrease in rate regardless of the conditions of the aqueous solutions.  相似文献   

16.
Particles of poorly water-soluble drugs were prepared to develop a dry powder inhaler (DPI). Spray freeze-drying (SFD) technique using a four-fluid nozzle (4N), which has been developed by authors, was applied in this research. Ciclosporin and mannitol were used as a poorly water-soluble model drug and a dissolution-enhanced carrier, respectively. The organic solution of ciclosporin and aqueous solution of mannitol were separately and simultaneously atomized through the 4N, and the two solutions were collided with each other at the tip of the nozzle edge. The spray mists were immediately frozen in liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier. tert-Butyl alcohol (t-BuOH) was used as the organic spray solvent due to its relatively high freezing point. The resultant composite particles with varying drug content were characterized depending on their morphological and physicochemical properties. The particles contained amorphous ciclosporin and δ-crystalline mannitol. The characteristic porous structure of SFD particles potentially contributed to their good aerodynamic performance. A series of particles with a similar size distribution and different drug content revealed that the incorporation of mannitol successfully improved the cohesive behavior of ciclosporin, leading to enhanced aerosol dispersion. The dissolution test method using low-volume medium was newly established to simulate the release process from particles deposited on the surface of the bronchus and pulmonary mucosa. The composite with hydrophilic mannitol dramatically improved the in vitro dissolution behavior of ciclosporin in combination with the porous structure of SFD particles.  相似文献   

17.
18.
The formation of a complex between a swelling clay mineral and griseofulvin (GF), a poorly water-soluble drug, was examined. A strong host-guest interaction between the neutral drug molecules and the clay mineral was observed not only in the solid state but also in aqueous dispersion. The powder X-ray diffraction patterns revealed the disappearance of a crystalline phase of GF through host-guest interaction for samples having low GF contents. The complex formation was confirmed to be due to monolayer adsorption on the basis of quantitative thermochemical analyses. The strong interaction between GF and the clay was also detected when the complex powder was dispersed in an aqueous medium on the basis of the intensity changes of from free GF solution in CD and fluorescence spectra as compared with those observed for the free GF solution.  相似文献   

19.
Micronization is the most effective way to enhance the dissolution rate of poorly water-soluble drugs and bioavailability in human body. Microemulsion systems were applied to micronize mitotane and warfarin by cooling method and solvent diffusion process. The triangle phase diagram of the ternary benzyl alcohol+sodium dodecyl sulfate (SDS)+water system was investigated at six different temperatures to determine an appropriate operational microemulsion regime for crystallization. The particle sizes of mitotane and warfarin re-crystallized from microemulsion systems were greatly reduced (to ~1 μm) compared with that of the commercial ones. Consequently, the dissolution rate coefficients of re-crystallized mitotane and warfarin were significantly improved by, respectively, 7.5 and 13.3 times larger than that of the commercial ones. The crystal structures of re-crystallized mitotane and warfarin were the same as the commercial ones based on the XRD and DSC measurements. In addition, it is interesting to observe the variation of morphology of re-crystallized mitotane as a function of the composition of the SDS and the drug concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号