首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of a collisionless shock wave at the front of which ion-acoustic turbulence is excited is investigated. On the basis of the theory of anomalous resistance, equations are obtained for the oscillational spectrum and the particle distribution function in the plasma which, when known, make it possible to determine the magnetic field profile, density, and other macroscopic characteristics of the shock wave. The possibility of comparing theoretical predictions with experimental results from light scattering at the shock front is discussed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 38–43, May–June, 1974.The author thanks R. Z. Sagdeev and D. D. Ryutov for discussions of the work.  相似文献   

2.
3.
4.
5.
A. M. Anile 《Wave Motion》1984,6(6):571-578
An asymptotic method is developed in order to treat the evolution of weak shock waves. One obtains a geometrical theory according to which weak shock waves propagate along rays and satisfy a transport law.  相似文献   

6.
This paper gives a solution of the problem of the propagation of weak shock waves in an inhomogeneous conducting medium in the presence of a magnetic field. The width of the perturbed region is taken to be small compared with the characteristic dimensions of the problem. The magnetic Reynolds number is also assumed small, which allows one to neglect the induced magnetic field. The method of solution employed is similar to that used in [1–3],The author is grateful to B. I. Zaslavskii for useful advice and for discussing the paper.  相似文献   

7.
A note on weak shock wave reflection   总被引:2,自引:0,他引:2  
This work discusses the possibility of reconstructing, both numerically and experimentally, the steady state flow field and shock reflection pattern close to the triple point of von Neumann, Guderley and Vasilev reflections. First, a criterion for the orientation of shock wave fronts, even in the case of subcritical/subsonic flow downstream the front, is introduced and formalized. Then, a technique for obtaining a close view of the above reflection patterns centered about the triple point is described and a numerical example, within the framework of shallow water flow, is presented and discussed.  相似文献   

8.
Theoretical study of a weak shock focusing process in a confined chamber filled with liquid is presented. The chamber has a form of a thin cylinder with a parabolic cross-section, planar bottom and an arbitrary, although slowly varying, upper bounding surface. Analytical, numerical and experimental studies of weak shock wave focusing have been previously performed in the elliptic and ellipsoidal cases with a shock wave generated at one of the foci by means of an electric discharge or a microexplosion. In the present case a planar shock, perpendicular to the axis of the parabolic cross-section, sent in the inner of the chamber will converge at the focus after the reflection off the chamber wall, thus offering a different technical realization of the shock generation. The problem is solved within the frame of the geometrical acoustics approximation and a relation between the form of the upper bounding surface of the chamber and the pressure distribution behind the converging wavefront is obtained. It is shown that a desired pressure distribution may be obtained by an appropriate choice of the upper bounding surface.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

9.
A numerical solution is considered to the universal nonlinear boundary-value diffraction problem which occurs in various problems of weak interaction [1, 2] in the asymptotic analysis of the flow in a region with large gradients of the parameters near the point of intersection of the incident, diffracted, and reflected waves. The analytical solutions to this type of problem usually approximately satisfy the conditions on the diffracted front, the position of which is not known beforehand, but is found along with the solution. In the present paper, the problem is solved by the numerical method of [3], which reduces the initial boundary-value problem for the system of short-wave equations with an unknown boundary to the solution of a series of boundary-value problems with a fixed boundary. The problem of the diffraction of a weak shock wave on a wedge with a finite apex angle is considered as an application of the solution. The data calculated by the asymptotic theory agree significantly better with the experimental data [5] than the theoretical data of [4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6. pp. 176–178, November–December, 1984.  相似文献   

10.
On the basis of experimental observations and theoretical analysis of flow structure in the neighborhood of the triple point, it is shown that one should reject the condition for equality of the angle of deflection of flows passing through the Mach front and the two other fronts and replace it with some supplementary condition. The system of consistency equations in the indicated region is closed by an equation which is obtained under the assumption of the extremality of the deflection angle of a flow passing through the incident and reflected fronts. Calculations of the pressure drops behind the shock fronts agree with experimental data in this case.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 26–33, September–October, 1973.The authors thank S. A. Khristianovich for consideration of the work and advice.  相似文献   

11.
12.
13.
14.
The pressure modulation of a weak shock wave induced by a Nd:YAG laser pulse when passing across a turbulent slit jet was experimentally investigated. With the slit jet the peak overpressure became smaller by an average of 12%, with a standard deviation of 27%. Clear relationships were obtained between the overpressure history and the experimentally observed shock front deformation, which was visualized as differential schlieren images. The peak overpressure was increased when the originally spherical blast wave front was locally flattened, whereas it was decreased when a hump in the shock wave front was formed.  相似文献   

15.
Attenuation of weak shock waves along pseudo-perforated walls   总被引:2,自引:0,他引:2  
In order to attenuate weak shock waves in ducts, effects of pseudo-perforated walls were investigated. Pseudo-perforated walls are defined as wall perforations having a closed cavity behind it. Shock wave diffraction and reflection created by these perforations were visualized in a shock tube by using holographic interferometer, and also by numerical simulation. Along the pseudo-perforated wall, an incident shock wave attenuates and eventually turns into a sound wave. Due to complex interactions of the incident shock wave with the perforations, the overpressure behind it becomes non-uniform and its peak value can locally exceed that behind the undisturbed incident shock wave. However, its pressure gradient monotonically decreases with the shock wave propagation. Effects of these pseudo-perforated walls on the attenuation of weak shock waves generated in high speed train tunnels were studied in a 1/250-scaled train tunnel simulator. It is concluded that in order to achieve a practically effective suppression of the tunnel sonic boom the length of the pseudo-perforation section should be sufficiently long. Received 23 June 1997 / Accepted 16 September 1997  相似文献   

16.
17.
When a weak shock wave reflects from wedges its reflection pattern does not appear to be a simple Mach reflection. This reflection pattern is known to be von Neumann Mach reflection in which a Mach stem can not necessarily be straight. In this paper the local change of the Mach stem curvature was experimentally and numerically investigated. A distinct triple point, at which the curvature becomes infinite as appears in a simple Mach reflection, was not observed but the Mach stem curvature became a maximum between foot of the Mach stem and a point, P1, at which an incident shock met with a reflected shock. Maximum curvature point P2 and P1 do not coincide for small wedge angles and tend to merge over a certain wedge angle. Experimental results agreed with numerical results. The trajectory angle of P2 was found to be expressed well by Whitham's shock-shock angle.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

18.
The effect of dispersion due to charge separation on the structure of the front of a shock wave in a plasma is studied. It is shown that for small values of the shock front has an oscillatory structure with a characteristic length of order .Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 134–139, May–June, 1977.The authors thank L. P. Pitaevskii for useful discussions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号