首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用火焰原子吸收光谱法测定空气中铬含量,评定了测定过程的不确定度,把不确定度分解为标准溶液及配制引入的不确定度、标准曲线拟合引入的不确定度和样品重复测定引入的不确定度等七个因素,系统分析并计算各不确定度分量和扩展不确定度.结果表明,其中采集样品引入的不确定度是主要影响因素,空气中铬含量为3.88 μg/m3时,扩展不确定度为0.12 μg/m3.  相似文献   

2.
火焰原子吸收光谱法测定水样中铅含量的不确定度评定   总被引:3,自引:1,他引:2  
通过采用火焰原子吸收光谱法测定水样中铅的不确定度各项来源和评定方法的分析,建立一种分析实验室不确定度的评定方法,使实验结果更有客观性和准确性.  相似文献   

3.
火焰原子吸收光谱法测定土壤中锌含量的不确定度主要来源于测量样品消解液中锌的浓度、测量过程中使用的玻璃量具及样品称量产生的不确定度,对这些分量进行了量化计算,求得合成标准不确定度和扩展不确定度分别为1.29、2.6mg/kg。影响锌含量测量不确定度的主要因素是测量样品消解液中锌的浓度引起的不确定度。  相似文献   

4.
为建立并运用火焰原子吸收光谱法测定生活饮用水中锰的不确定度评定方法,根据《不确定度评定与表示》,并参考《化学分析测量不确定度的评定指南》,对火焰原子吸收法测定生活饮用水中锰进行了不确定度的分析和评价。结果表明,合成不确定度0.006 7 mg/L,扩展不确定度0.013 mg/L。运用该不确定度评定分析方法对测量过程中的关键环节进行重点质量控制,可有效降低引入的不确定度,保证测定结果准确。  相似文献   

5.
探讨了用原子吸收光谱法测定铜阳极泥中铋的不确定度的评定,阐述了测量结果不确定度主要来源于样品称量、试液定容体积和测量试液中铋的浓度产生的不确定度,计算了这些不确定的分量,最后计算出合成标准不确定度和扩展不确定度.通过评估,得出影响铋量测量不确定度的主要因素是测量试液中铋浓度时所引起的不确定度.  相似文献   

6.
叶晓英 《分析试验室》2008,27(Z1):386-389
根据航空工业部行业标准检验方法[1],结合实验室的日常分析实际情况,对原子吸收光谱法测定钛合金中微量铜含量进行不确定度评定。对测定过程中的标准曲线、样品称量以及使用仪器带来的不确定度进行了分析,并量化每个不确定度分量,并且确定最大不确定度分量为溶液浓度分量,从而合成标准不确定度以及形成该方法扩展不确定度的表达,为质量控制提供有效、可靠、可溯源的测量数据。  相似文献   

7.
根据ISO导则采用两种量化指标(Ⅰ、Ⅱ)评定原子吸收光谱法的不确定度。量化指标Ⅰ根据实验的操作流程,对不确定度的各来源因素进行量化表述,进而估算总不确定度。不确定度范围较小,可作为实验质量的最高标准,用于评价同一实验人员的测定结果质量。量化指标Ⅱ根据分析过程中的校准、标准物质测定、未知样品测定和分析质量控制四个环节分别对其不确定度各来源因素进行量化表述。采用量化指标Ⅱ评估出的不确定度范围较大,适用于评价不同实验人员或不同实验室之间测定结果的质量。在实际应用中可根据不同的评定对象选择合适的量化指标。  相似文献   

8.
对浸提法消化试样和火焰原子吸收光谱法测定化妆品中的镉进行不确定度分析。对各主要不确定度的来源进行分析,为有效控制该法测定化妆品的镉含量提供可靠理论依据。  相似文献   

9.
对火焰原子吸收光谱法测定锌精矿中银量的测量不确定度来源进行分析,并对各不确定度分量进行量化,求得合成标准不确定度和扩展不确定度分别为0.000 6%和0.001 2%。  相似文献   

10.
火焰原子吸收光谱法测定土壤中镉   总被引:5,自引:0,他引:5  
用HCl-HNO3-HF-HCIO4消解土样,加入四氯化碳萃取消解液中的Cd-DDTC的配合物,用HNO3-H2O2混合液反萃取。用火焰原子吸收光谱法测定反萃取的水相中镉。  相似文献   

11.
建立火焰原子吸收光谱法测定锌合金中镁含量。选用10 mL盐酸溶液(1+1)溶解样品,加入5 mL质量浓度为100 g/L的LaCl3溶液,以消除铝对镁的化学干扰,在选定的仪器工作条件下进行测定。结果表明,镁的质量浓度在0~1.238 mg/L范围内与与吸光度具有良好的线性关系,相关系数为0.999 4,线性方程为Y=1.086 4X+0.018 5,方法测定下限为0.010 mg/L。样品测定结果的相对标准偏差为1.61%~3.45%(n=6),加标回收率为91.3%~94.7%。该方法准确度高,精密度好,满足锌合金中镁含量的日常检测要求。  相似文献   

12.
赵建峰 《化学研究》2019,30(3):234-237
通过光电直读发射光谱法对镁合金中钙元素含量的测量不确定度进行了分析,来源包括直读光谱仪校准时示值误差引入的不确定度、标准样品引入的不确定度、测量重复性引起的不确定度、标准曲线校准时引入的不确定度,同时对各分量不确定度进行了评定.  相似文献   

13.
本文利用高碘酸钠对相邻羟基氧化作用的专属性,在一定介质中,高碘酸钠与核黄素完全反应后,过量的高碘酸的钠与硝酸铅或者硝酸铜生成沉淀,通过测定Pb<'2+>或者Cu<'2+>,建立了间接测定核黄素含量的方法.铅体系和铜体系测定的相对标准偏差(RSD)分别为4.8%和5.2%,检出限分别为0.6μg.mL<'-1>和0.5μ...  相似文献   

14.
In this study, a new device was applied for direct solid sampling flame atomic absorption spectrometry. It was used for trace determination of cadmium in biological samples (bovine and chicken liver). Test samples (0.5 to 7 mg) were weighed into small paper capsules, which were introduced into a quartz cell heated by an air-acetylene flame. Operational conditions for the proposed system were evaluated. There was no significant difference between the results obtained with the proposed system and those obtained after digestion and determination by conventional graphite furnace atomic absorption spectrometry. Good agreement was also obtained with the certified values of two reference materials. Background signals were always low. The characteristic mass was 0.34 ng and relative standard deviation was less than 8%. The limit of detection for the proposed procedure was 1.6 ng or 0.23 μg g 1 if a sample mass of 7 mg was used. Excluding the steps for sample preparation (drying, milling and weighing), the proposed system allows the determination of 40 test samples per hour and it can be easily adapted to conventional flame atomic absorption spectrometers.  相似文献   

15.
Cloud point extraction (CPE) is proposed as a preconcentration procedure for the determination of Cd in soft drinks by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). The cadmium reacted with pyridyl-azo-naphthol (PAN) to form hydrophobic chelates, which were extracted into the micelles of Triton X-114 in a solution buffered at pH 9. NaCl was used for the phase separation. The variables which affect the preconcentration were optimized using a 23 factorial design and central composite design (CCD). A response surface maximum point was obtained, and the critical values were a concentration of 0.13 mmol L? 1 PAN, 0.03% m/v Triton X-114 and 2.3% m/v NaCl. Under the optimized conditions, after the extraction and preconcentration steps, a sample volume of 100 μL was introduced into the hot Ni tube using water as the carrier at a flow rate of 0.4 mL min? 1. The values obtained for the detection limit, relative standard deviation and preconcentration factor were 0.0178 μg L? 1, 4.1% (n = 8) and 55.5, respectively. The accuracy of the proposed method was demonstrated by performing addition-recovery experiments. Recoveries varied from 88 to 104%.  相似文献   

16.
Raschig rings used as a safety mechanism, to avoid critical reactions in solutions containing radioactive materials, are usually made of borosilicate glass. Since boron is the active neutron absorbing ingredient, it is important to determine the boron content in the Raschig rings at any given time. A method has been developed to determine rapidly the boron content of borosilicate glasses. Ion exchange and potentiometric measurement are used to determine boron as the tetrafluoroborate ion. The precision of the method is ±2.0 mV. The average difference between values of a wet chemical analysis and those of the potentiometric method is 7.7%.  相似文献   

17.
This article describes an analytical method for the determination of magnesium taking advantage of the cloud point phenomenon employing a suitable chelating agent (chloranilate) for Mg analysis. The method encompasses pre-concentration of the metal chelate followed by flame atomic absorption spectrometry (FAAS) analysis. The chelating agent chosen for this task is a newly synthesised salt of chloranilic acid, trizma-chloranilate, which reacts with Mg but at the same time has a very low affinity for other metallic cations like silicon, aluminium and sodium, which interfere with the determination of Mg in FAAS. The condensed surfactant phase with the metal chelate(s) is introduced into the flame of an atomic absorption spectrometer after its treatment with an acidified methanolic solution. In this way, complex and time-consuming steps for sample treatment are avoided while increased sensitivity is achieved by the presence of both methanol and surfactant in the aspirated sample. The analytical curve was rectilinear in the range of 5-220 mugl(-1) and the limit of detection was as low as 0.75 mugl(-1) with a standard deviation of 5.2%. The method was applied for the determination of Mg in natural and mineral waters with satisfactory results and recoveries in the range of 97-102%.  相似文献   

18.
Yebra MC  Enríquez MF  Cespón RM 《Talanta》2000,52(4):631-636
A rapid, sensitive, accurate and precise flame atomic absorption method is described for the determination of cadmium in mussels. The method is based on the continuous precipitation of cadmium as an ion pair between tetraiodocadmate and quinine and dissolution of the precipitate with ethanol. The metal can be preconcentrated 32-fold using 15 ml of sample solution by using a time-based technique at a sampling flow rate of 3.0 ml min(-1). The proposed method allows the determination of cadmium in the range 0.25-5.5 mug g(-1). The precision (relative standard deviation) obtained for different amounts of cadmium is in the range 1.5-4.7% at the 0.25-5.0 mug g(-1) level. The method demonstrates high tolerance to interferences, and the data obtained are in agreement with the certified value of a selected reference material. This procedure was applied to the determination of cadmium in mussel samples from estuaries in Galicia (Spain).  相似文献   

19.
A continuous-flow procedure is proposed for the indirect determination of ascorbic acid, based on its reducing properties because of the oxidation of its 1,2-enediol group. Iron(III) was injected into a 1,10-phenanthroline stream, which was mixed with a sample carrier and then with a sodium picrate solution stream. In these conditions the iron(III) was reduced to iron(II) by the ascorbic acid. Thus, the iron(II) formed reacts with 1,10-phenanthroline to form a charged red complex, which with picrate ion forms a stable red-orange uncharged ion-association complex that is adsorbed on-line on a non-ionic polymeric adsorbent (Amberlite XAD-4), proportionally to the ascorbic acid in the sample. The unadsorbed iron was determined by flame atomic absorption spectrometry. The proposed method allows the determination of ascorbic acid in the range 0.5–25 g ml–1 with a relative standard deviation of 2.9% at a rate of ca. 90 samples h–1. This method has been applied to the determination of ascorbic acid in pharmaceutical preparations, fruit juices and sweets. The results obtained in the analysis are compared with those provided by the 2,6-dichloroindophenol method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号