首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the steady mixed convection boundary layer flow of a viscous and incompressible fluid near the stagnation-point on a vertical surface with the slip effect at the boundary. The temperature of the sheet and the velocity of the external flow are assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into a system of ordinary differential equations, which are then solved numerically by a shooting method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. The results indicate that for the opposing flow, the dual solutions exist in a certain range of the buoyancy parameter, while for the assisting flow, the solution is unique. In general, the velocity slip increases the heat transfer rate at the surface, while the thermal slip decreases it.  相似文献   

2.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

3.
The solution to the unsteady mixed convection boundary layer flow and heat transfer problem due to a stretching vertical surface is presented in this paper. The unsteadiness in the flow and temperature fields is caused by the time-dependent of the stretching velocity and the surface temperature. The governing partial differential equations with three independent variables are first transformed into ordinary differential equations, before they are solved numerically by a finite-difference scheme. The effects of the unsteadiness parameter, buoyancy parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Both assisting and opposing buoyant flows are considered. It is observed that for assisting flow, the solutions exist for all values of buoyancy parameter, whereas for opposing flow, they exist only if the magnitude of the buoyancy parameter is small. Comparison with known results for steady-state flow is excellent.  相似文献   

4.
The magnetohydrodynamic(MHD) mixed convection flow past a shrinking vertical sheet with thermal radiation is considered. Besides, the effects of Cu-Al2O3 nanoparticles and dust particles are considered. The similarity variables reduce the governing equations to the similarity equations, which are then solved numerically. The outcome shows that, for the shrinking case, the solutions are not unique. The rate of heat transfer and the friction factor enlarge with increasing the...  相似文献   

5.
 The effect of lateral mass flux on mixed convection heat and mass transfer in a saturated porous medium adjacent to an inclined permeable surface is analyzed. A similarity solution is obtained when surface temperature and concentration, free stream velocity and injection/suction velocity of fluid are prescribed as power functions of distance from the leading edge. The cases when the flow and buoyancy forces are in the same and opposite directions are discussed both for aiding and opposing buoyancy effects. The governing parameters are the mixed convection parameter Gr, the Lewis number Le, the buoyancy ratio N, the lateral mass flux parameter f w, representing the effects of injection or withdrawal of fluid at the wall, and λ which specifies three cases of the inclined plate. The interactive effect of these parameters on heat and mass transfer rates are presented. It is observed that the diffusion ratio (Le) has a more pronounced effect on concentration field than on flow and temperature fields. It is found that the rates of heat and mass transfer increase with suction and decrease with injection of the fluid. Received on 31 August 2000 / Published online: 29 November 2001  相似文献   

6.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

7.
A mathematical model for the flow and heat transfer in a gravity-driven liquid film is presented, in which the strict Boussinesq approximation is adopted to account for buoyancy. A similarity transformation reduces the governing equations to a coupled set of ordinary differential equations. The resulting two-parameter problem is solved numerically for Prandtl numbers ranging from 1 to 1000. Favourable buoyancy arises when the temperatureT w of the isothermal surface is lower than the temperatureT 0 of the incoming fluid, and the principal effects of the aiding buoyancy are to increase the wall shear and heat transfer rate. For unfavourable buoyancy (T w>T 0), the buoyancy force and gravity act in opposite directions and the flow in the film boundary layer decelerates, whereas the friction and heat transfer are reduced. The observed effects of buoyancy diminish appreciably for higher Prandtl numbers.  相似文献   

8.
The unsteady laminar incompressible mixed convection flow over a two-dimensional body (cylinder) and an axisymmetric body (sphere) has been studied when the buboyancy forces arise from both thermal and mass diffusion and the unsteadiness in the flow field is introduced by the time dependent free stream velocity. The nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The results indicate that for the thermally assisting flow the local skin friction, heat transfer and mass diffusion are enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force. But this trend is opposite for the thermally opposing flow. The point of zero skin friction moves upstream due to unsteadiness. No singularity is observed at the point of zero skin friction for unsteady flow unlike steady flow. The flow reversal is observed after a certain instant of time. The velocity overshoot occurs for assisting flows.  相似文献   

9.
The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson's fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force.The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature.  相似文献   

10.
The steady boundary-layer flow near the stagnation point on an impermeable vertical surface with slip that is embedded in a fluid-saturated porous medium is investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary differential equations. This system is then solved numerically. The features of the flow and the heat transfer characteristics for different values of the governing parameters, namely, the Darcy–Brinkman, Γ, mixed convection, λ, and slip, γ, parameters, are analysed and discussed in detail for the cases of assisting and opposing flows. It is found that dual solutions exist for assisting flows, as well as those usually reported in the literature for opposing flows. A stability analysis of the steady flow solutions encountered for different values of the mixed convection parameter λ is performed using a linear temporal stability analysis. This analysis reveals that for γ  =  0 (slip absent) and Γ  =  1 the lower solution branch is unstable while the upper solution branch is stable.  相似文献   

11.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

12.
The paper presents a study of the laminar mixed convection adjacent to vertical continuously stretching sheets, taking into account the effects of variable viscosity and variable thermal diffusivity. The similarity solutions are reported for isothermal sheet moving with a velocity of the form uw=Bx0.5 and a continuous linearly stretching sheet with a linear surface temperature distribution. The equations of conservation of mass, momentum and energy, which govern the flow and heat transfer, are solved numerically by using the shooting method. The numerical results obtained for the flow and heat transfer characteristics reveal many interesting behaviors. The numerical results show that, variable viscosity, variable thermal diffusivity, the velocity exponent parameter, the temperature exponent parameter and the buoyancy force parameter have significant influences on the velocity and temperature profiles, shear stress and Nusselt number in two cases air and water.  相似文献   

13.
The mixed convection flow due to a line thermal source embedded at the leading edge of an adiabatic vertical plane surface immersed in a saturated porous medium has been studied. Both weakly and strongly buoyant plume regimes have been considered. The cases of buoyancy assisting and buoyancy opposing flow conditions have been incorporated in the analysis. The results are presented for the entire range of buoyancy parameter from the pure forced convection (ξ=0) to the pure free convection (ξ → ∞@#@) regimes. For buoyancy-assisting flow, the wall temperature and the velocity at the wall increase as the plume strength increases. However, they all decrease as the free-stream velocity increases. For buoyancyopposing flow, the temperature at the wall increases as the strength of the plume increases but velocity at the wall decreases.  相似文献   

14.
An analysis of steady laminar mixed-convection heat transfer from a rotating or nonrotating axisymmetric body is presented. A mixed-convection parameter is proposed to serve as a controlling parameter that determines the relative importance of the forced and the free convection. In addition, a rotation parameter is introduced to indicate the relative contributions of the flow forced convection and the rotational forced convection. The values of both these two parameters lie between 0 and 1. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection from the forced-convection limit (rotating or nonrotating bodies) to the pure free-convection limit (non-rotating bodies) and the entire regime of forced convection from the pure flow forced-convection limit (nonrotating bodies) to pure rotational forced-convection limit (rotating bodies). The effects of mixed-convection intensity, body rotation, fluid suction or injection, and fluid Prandtl number on the velocity profiles, the temperature profiles, the skin-friction parameter, and heat transfer parameter are clearly illustrated for both cases of buoyancy assisting and opposing flow conditions.  相似文献   

15.
浮力对混合对流流动及换热特性的影响   总被引:1,自引:0,他引:1  
用热线和冷线相结合的技术测量垂直圆管内逆混合对流流体的平均速度、 温度以及它们的脉动. 较详细地研究了浮力对逆混合对流的流动特性和传热特性的影响. 评 估了实验中采用的冷线测量温度补偿速度探头温度敏感的影响. 逆混合对流的传热结果用无 量纲参数Ω (Ω= Grd / Red2 )来表示,其中,基于管道直 径的雷诺数Red变化范围为900~18000, 浮力参数Ω变化范围为 0.004899~0.5047. 研究结果表明,浮力对逆混合对流的换热有强化作用. 随着葛拉晓夫数Grd的增加,温度脉动,流向雷诺正应力和流向温度通量增 大,并且在靠近壁面的流体区域尤其明显. 热线与冷线相结合的技术适合于研究非绝热的流 动测量,可以用于研究浮力对流动和换热特性的影响.  相似文献   

16.
A boundary layer analysis is used to investigate the heat and mass transfer characteristics of mixed convection about a vertical flat plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion. The plate is maintained at prescribed surface temperature/concentration (PST/PSC) or prescribed heat/mass flux (PHF/PMF). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results for the local heat transfer rate and the local mass transfer rate are presented for various parameters. The local heat and mass transfer rates increase with increasing n and m and buoyancy parameter ξ. When buoyancy parameter ξ is very small (large) the value of local Nusselt and the local Sherwood number correspond with the pure forced (free) convection, respectively. Increasing buoyancy ratio N (or N *) increases the local heat and mass transfer rates. It is apparent that Lewis number has a pronounced effect on the local mass transfer rate than it does on the local heat transfer rate. Furthermore, increasing Lewis number decreases (increases) the local heat (mass) transfer rate. Received on 8 December 1997  相似文献   

17.
Assisting and opposing flows in a mixed convection boundary layer flow over an isothermal vertical plate are studied for the case of variable physical properties and uniform free stream. Fluid viscosity and thermal conductivity are assumed to be linear functions of temperature. Using local similarity the flow and heat transfer quantities are found to be functions of four parameters, i.e. Richardson number, Prandtl number, a viscosity variation parameter and a thermal conductivity variation parameter. Numerical solutions are obtained by two methods, a shooting technique and Nachtsheim-Swigert technique, for selected values of parameters appropriate for the fluids considered and specific temperatures of the plate and ambient fluid. For assisting flows, there exist solutions for all values of Richardson number while for opposing flows solutions exist only for a finite set of its values and, in addition, there also exist dual solutions. Important flow and heat transfer quantities of practical interest are determined and the influence of different parameters is discussed.  相似文献   

18.
The non-darcy mixed convection flows from heated vertical and horizontal plates in saturated porous media have been considered using boundary layer approximations. The flows are considered to be driven by multiple buoyancy forces. The similarity solutions for both vertical and horizontal plates have been obtained. The governing equations have been solved numerically using a shooting method. The heat transfer, mass transfer and skin friction are reduced due to inertial forces. Also, they increase with the buoyancy parameter for aiding flow and decrease for the opposing flow. For aiding flow, the heat and mass transfer coefficients are found to approach asymptotically the forced or free convection values as the buoyancy parameter approaches zero or infinity.  相似文献   

19.
The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.  相似文献   

20.
In this paper, the natural convection in a non-Darcy porous medium is studied using a temperature-concentration-dependent density relation. The effect of the two parameters responsible for the nonlinear convection is analyzed for different values of the inertial parameter, dispersion parameters, Rayleigh number, Lewis number, Soret number, and Dufour number. In the aiding buoyancy, the tangential velocity increases steeply with an increase in the nonlinear temperature parameter and the nonlinear concentration parameter when the inertial effect is zero. However, when the inertial effect is non-zero, the effect of the nonlinear temperature parameter and the nonlinear concentration parameter on the tangential velocity is marginal. The concentration distribution varies appreciably and spreads in different ranges for different values of the double dispersion parameters, the inertial effect parameter, and also for the parameters which control the nonlinear temperature and the nonlinear concentration. Heat and mass transfer varies extensively with an increase in the nonlinear temperature parameter and the nonlinear concentration parameter depending on Dacry and non-Darcy porous media. The variation in heat and mass transfer when all the effects, i.e., the inertial effect, double dispersion ef- fects, and Soret and Dufour effects, are simultaneously zero and non-zero. The combined effects of the nonlinear temperature parameter, the nonlinear concentration parameter and buoyancy are analyzed. The effect of the nonlinear temperature parameter and the nonlinear concentration parameter and also the cross diffusion effects on heat and mass transfer are observed to be more in Darcy porous media compared with those in non- Darcy porous media. In the opposing buoyancy, the effect of the temperature parameter is to increase the heat and mass transfer rate, whereas that of the concentration parameter is to decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号