首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
锂金属由于其高比容量和低电极电势等优点被认为是下一代高比能量电池体系中最有潜力的负极材料。然而由于锂金属的高活性,锂负极在循环过程中会产生大量的枝晶,导致SEI(solid-electrolyte interphase)破裂,并且枝晶增加了电极与电解液的接触面积,使得副反应进一步增加。此外,脱落的枝晶形成死锂,从而降低电池的充放电库仑效率。并且不可控的锂枝晶持续生长会刺穿隔膜引发电池短路,伴随着电池热失控等安全问题。本综述基于锂负极存在的主要挑战,结合理解锂枝晶的成核生长模型等机理总结并深度分析近些年来在液态和固态电解质体系中改善锂金属负极的主要策略及其作用机理,为促进高比能量锂金属电池的应用提供借鉴参考作用。  相似文献   

2.
可充电镁电池具有理论体积比容量大、 地壳丰度高、 成本低、 环境友好及更为安全等优点, 是未来高能量存储系统发展的重要方向之一. 在大多数传统电解液中, 镁金属负极表面形成的钝化膜会阻碍镁的可逆沉积溶解过程, 从而限制了可充电镁电池的商业化应用. 由于存在成本高、 合成步骤复杂、 离子电导率低及难以同时与正负极兼容等问题, 聚焦于解决镁负级钝化问题的电解液研究陷入瓶颈. 因此, 通过对镁电池负极进行修饰改性, 使其在传统电解液中实现可逆过程是一种具有发展前景的策略. 本文从合金负极及人工界面形成两方面总结了近年来用于可充电镁电池负极改性的策略, 并在分析对比的基础上提出了进一步发展的结论和展望.  相似文献   

3.
对高比能量锂离子电池需求的不断增加激发了锂金属负极的应用研究。锂金属具有高放电比容量(3860 mAh·g?1),低电极电位(?3.04 V),是锂离子电池的理想负极材料。然而,锂金属在循环过程中会形成不稳定的固态电解质(SEI)膜,而且会生成枝晶,枝晶的生长会引发电池短路等安全问题,极大地阻碍了其应用。理想的SEI膜应具有良好的锂离子传导性、表面电子绝缘性和机械强度,可调控锂离子在表面均匀沉积,促进离子传输,抑制枝晶生长,因此构筑功能化SEI膜是解决锂金属负极所面临挑战的一项有效策略。本综述以锂金属枝晶形成和生长的机理为出发点,分析总结SEI膜的构建策略、不同组成SEI膜的结构和功能特性及其对锂金属负极性能的影响,并对锂金属实用化面临的挑战及未来发展方向进行了展望。  相似文献   

4.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   

5.
高能量密度二次电池的商业化将会推动便携式电子设备和电动车的飞速发展。锂金属电池因具有较高的理论能量密度而受到研究者的广泛关注。然而,锂金属负极较低的库仑效率(CE)和枝晶生长等问题,严重制约了锂金属电池的发展。库仑效率是衡量电池体系可逆性的关键参数之一,锂金属负极的库仑效率在不同电解液中存在较大的差异,本文以四种常见的电解液为例,包括1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯电解液,1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯+5%(w)氟代碳酸乙烯酯电解液,1 mol·L-1双(三氟甲烷磺酰)亚胺锂-乙二醇二甲醚/1,3二氧戊环+2%(w)硝酸锂电解液,以及4 mol·L-1双氟磺酰亚胺锂-乙二醇二甲醚电解液,利用原子力显微镜研究了不同电解液体系中锂金属的生长行为,探讨了锂金属沉积形貌与其库仑效率之间的联系,为发展高效的锂金属负极提供了参考依据。  相似文献   

6.
As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.  相似文献   

7.
在化石能源持续消耗的背景下,锂离子电池已成为储能电池的主流.随着锂离子电池向航天、深海潜航等领域的扩展,要求其能够在低于-20℃的低温甚至极寒状态下发挥出应有的能量密度和功率密度,但其在极端情况下的性能改善亟待解决.锂离子电池的低温性能受电极材料、电解液等多方面影响,本文将近几年针对锂离子电池电解液体系各组成部分及石墨负极在低温情况下的改善进行了总结,最后对低温锂离子电池发展前景进行了展望.  相似文献   

8.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

9.
10.
锂金属负极具有极高的理论比容量和最低的还原电位,因此锂金属电池被认为是最具潜力的高比能储能器件之一.然而,充放电过程中不受控制的枝晶生长、不稳定的界面反应与巨大的体积变化导致锂金属负极库伦效率低与循环稳定性差,同时枝晶刺穿隔膜也会带来安全隐患,这些问题极大地制约着锂金属电池的实际应用.多孔聚合物由于比表面积大、密度低、...  相似文献   

11.
通过低还原电位的含活泼氢的烃类化合物及苯腈在消耗性镁阳极存在下的有机电解反应证实了阴极上高分散活性镁的存在, 且其活性比以往方法所得的活性镁的活性更高。  相似文献   

12.
Radical reactions of i-PP are a well known technical process for the chemical degradation to increase the flowability of the i-PP melt. By decreasing the temperature and increasing the life time of the PP-radicals, a process to synthesize long chain branched i-PP, was developed. The long chain branched-i-PP allows to introduce the i-PP in processing technologies as blow moulding film technology or foaming technology. The mechanism will be discussed. The radical grafting of Polypropylene (PP) becomes more important for the developing of PP-alloys with extended properties. Methylmethacrylate and styrene were polymerized and grafted in PP at low temperatures in solid state. Grafting and polymerizing in solid state means solving the monomers in the PP-powder directly from the reactor without contacting with oxygen (air). The reaction is started by the thermal decomposition of a peroxide. The reactivity of the primary radicals from the peroxide and the transfer reactions of the polymer radical of the PMMA or PS influences the amount of the grafted polymer. The solubility of the monomers and the peroxide in the amorphous i-PP-phase was measured. The grafting yield and the dispersity of the second polymer depends on the solubility and dispersity of peroxide and monomers in the PP-powder particles.  相似文献   

13.
Discharge and corrosion performances of magnesium alloy anode sheets with content of Hg 1∼3 wt % were investigated. The results show that adding the element of Hg can promote discharge performance of magnesium alloy sheet in two ways: (i) adding an appropriate amount of Hg could inhibit the microgalvanic corrosion and prevent the formation of thick corrosion product film on the matrix surfaces, (ii) the second phase of Mg3Hg could activate magnesium matrix, improve peak voltage and effective discharge time. However, when the content of Hg exceeded tolerance limit, the corrosion rate of magnesium sheets would be accelerated greatly. The activation mechanism and the role of Hg in the process of corrosion product falling off were also investigated. The magnesium alloy anode sheets with Hg content between 1.65 and 2.16 wt % have the best discharge performance.  相似文献   

14.
Hydrophobic magnesium hydroxide (Mg(OH)2) nanoparticles were successfully synthesized via a one-step solution precipitation method with octadecyl dihydrogen phosphate (n-C18H37OPO3H2, ODP) as a surface modifier. The ODP was used to control the growth of crystal in the c direction (direction perpendicular to the layers) and to modify the surface property of the Mg(OH)2 particles produced from the precipitation. Measurements of relative contact angle and active ratio indicated that Mg(OH)2 samples were hydrophobic. The samples were characterized by using field emission scanning electron microscope (SEM), X-ray diffraction (XRD), infrared analysis (IR). The mechanism of influence of ODP on the surface property and morphology of Mg(OH)2 was discussed. Furthermore, from the results of the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests, it was confirmed that small amount of magnesium alkyl phosphate on the surface of Mg(OH)2 particles enhanced the thermal stability of the low density polyethylene(LDPE)/Mg(OH)2.  相似文献   

15.
《中国化学快报》2023,34(2):107594
Li metal has been regarded as the holy grail for the next-generation Li-ion battery. Li dendrites issues, however, impede its practical application. In general, prolonging the sand time of Li nucleation and regulating homogeneous Li+ flux are effective approaches to suppress the dendrites formation and growth. Regarding this view, a functional polypropylene (PP) separator is developed to regulate ion transportation via a newly designed Li-based metal-organic framework (Li-MOF) coating. The Li-MOF crystallizes in the orthorhombic space group P212121 and features a double-walled three-dimensional (3D) structure with 1D channels. The well-defined intrinsic nanochannels of Li-MOF and the steric-hinerance effect both restrict free migration of anions, contributing to a high Li+ transference number of 0.65, which improve the Sand time of Li nucleation. Meanwhile, the Li-MOF coating with uniform porous structure promotes homogeneous Li+ flux at the surface of Li metal. Furthermore, the Li-MOF coating layer helps to build solid-electrolyte interphase (SEI) layer that comprises of inorganic LiF and Li3N, which further prohibits the dendrites growth. Consequently, a highly stable Li plating/stripping cycling for over 1000 h is achieved. The functional separator also enables high-performance full lithium metal cells, the high-rate and long-stable cycling performance of LiNi0.8Mn0.1Co0.1 (NMC811)-Li and LiCoO2 (LCO)-Li cells further demonstrate the feasibility of this concept.  相似文献   

16.
The development of “controlled” and “living” polymerization processes with high end-group fidelity has enabled an unprecedented range of polymeric materials with specific chain-end functionality to be prepared. This highlight provides an overview of available strategies and evaluation of recent approaches for the chain-end functionalization of polymers prepared through controlled chain-growth polymerizations. As a tribute to Professor Robert B. Grubbs on the occasion of his 75th birthday, we also take this opportunity to highlight methods for the chain-end modification of polymers prepared by ring-opening metathesis polymerization within the broader context of functional group tolerant, living polymerizations. Finally, we focus attention toward new directions in polymer chain-end modifications, describing existing gaps in current strategies, and detailing recently reported protocols that show significant improvements over traditional methods. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2903–2914  相似文献   

17.
Aqueous zinc metal batteries feature intrinsic safety,but suffer from severe dendrite growth and water-derived side reactions.Many metal coatings have been explored for stabilizing Zn metal anode via a trialand-error approach.Here,we propose an exercisable way to screen the potential metal coating on Zn anodes in view of de-polarization effect and dendrite-suppressing ability theoretically.As an output of this screening,cadmium(Cd) metal is checked experimentally.Therefore,symmetric ZnllZn cells...  相似文献   

18.
Worldwide, the research on advanced materials for energy storage devices has drawn greater attention. Numerous works on different energy storage materials has been reported and still continuing. Among the energy storage devices, electrochemical supercapacitors (ESs) are one of the most investigated topics. The globalization and increasing demand of smart and flexible devices has forced the current research to develop low-cost, high-energy density and stable ESs. In this regard, metal sulfides (MSs)–based materials have been envisioned for ESs applications owing to their unique and promising properties. Recently, several research articles have been published on MSs-based electrodes for ESs with enhanced performances. This review presents a brief survey on such recent developments towards synthesis of MSs and their use as an efficient electrode material in ESs. The challenges and future aspect involved with MSs to develop and establish it as a promising energy storage material are also discussed.  相似文献   

19.
Aqueous zinc anodes have attracted the attention of many researchers owing to their high safety, low cost, and high theoretical specific capacity. However, its practical application is severely limited by the dendrite growth on zinc anode. Herein, we develop an intrinsically zincophobic barium-titanate protective layer with a porous structure to suppress the zinc dendrite formation by homogenizing the ion distribution on the anode surface, increasing the nucleation sites, and limiting the irregu...  相似文献   

20.
Implementation of sodium metal anode is highly desired for sodium batteries due to its high theoretical capacity and low redox potential. Unfortunately, formation of unstable solid electrolyte interphase(SEI)and uncontrollable growth of dendrites during charge/discharge cycles greatly hinder the practical application of sodium metal anode. In this study, an organic-metal artificial layer made of PVd F and Bi was constructed to protect Cu current collector via a facile coating method, leading to ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号