首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are described by a density function defined on the crack line. By solving the singular integral equations numerically, the dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs, EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.  相似文献   

3.
This article introduces a computational method based on the Jk-integral for mixed-mode fracture analysis of orthotropic functionally graded materials (FGMs) that are subjected to thermal stresses. The generalized definition of the Jk-integral is recast into a domain independent form composed of line and area integrals by utilizing the constitutive relations of plane orthotropic thermoelasticity. Implementation of the domain independent Jk-integral is realized through a numerical procedure developed by means of the finite element method. The outlined computational approach enables the evaluation of the modes I and II stress intensity factors, the energy release rate, and the T-stress. The developed technique is validated numerically by considering two different problems, the first of which is the problem of an embedded crack in an orthotropic FGM layer subjected to steady-state thermal stresses; and the second one is that of periodic cracks under transient thermal loading. Comparisons of the mixed-mode stress intensity factors evaluated by the Jk-integral based method to those calculated through the displacement correlation technique (DCT) and to those available in the literature point out that, the proposed form of the Jk-integral possesses the required domain independence and leads to numerical results of high accuracy. Further results are presented to illustrate the influences of the geometric and material constants on the thermal fracture parameters.  相似文献   

4.
The J-integral analysis is presented for the interaction problem between a semi-infinite interface crack and subinterface matrix microcracks in dissimilar anisotropic materials. After deriving the fundamental solutions for an interface crack subjected to different loads and the fundamental solutions for an edge dislocation beneath the interface, the interaction problem is deduced to a system of singular integral equations with the aid of a superimposing technique. The integral equations are then solved numerically and a conservation law among three values of the J-integral is presented, which are induced from the interface crack tip, the microcracks and the remote field, respectively. The conservation law not only provides a necessary condition to confirm the numerical results derived, but also reveals that the microcrack shielding effect in such materials could be considered as a redistribution of the remote J-integral. It is this redistribution that does lead to the phenomenological shielding effect.  相似文献   

5.
The J-integral based criterion is widely used in elastic–plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic–plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.  相似文献   

6.
Jep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.  相似文献   

7.
Summary The use of conservation integrals as fracture mechanics parameters has been extended since Rice's work on theJ-integral originally restricted to hyperelastic materials, to other classes of constitutive laws in the past few years. The so-calledI-integral being valid for any constitutive law seemeed to be suitable as a generalization of theJ-integral in the elastic-plastic regime.In this paper a proof is given that theI-integral vanishes under standard boundary conditions. Therefore, theI-integral has not the quality of a fracture mechanics parameter. A comparison betweenI andJ leads to a new representation of theJ-integral.
Über die Anwendbarkeit desI-Integrals in der Bruchmechanik
Übersicht Die Verwendung von Erhaltungsintegralen als Bruchmechanikparameter wurde seit der Arbeit von Rice über dasJ-integral, das ursprünglich auf hyperelastisches Material beschränkt war, in den letzten Jahren auf andere Klassen von Materialgesetzen erweitert. Das sogenannteI-Integral, das für ein beliebiges Materialgesetz gültig ist, schien als Verallgemeinerung desJ-Integrals im elastisch-plastischen, Bereich in Frage zu kommen.In dieser Arbeit wird bewiesen, daß dasI-Integral unter Standardrandbedingungen stets verschwindet. Es ist daher kein Bruchmechanik-Parameter. Ein Vergleich zwischenI undJ führt zu einer neuen darstellung desJ-Integrals.
  相似文献   

8.
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.  相似文献   

9.
对于截面含切口圆柱体的弹塑性自由扭转问题的分析,可按受力特点分为三个阶段:全弹性阶段、全塑性阶段和弹塑性阶段.每一阶段对应的分析方法不同,其中,在全弹性阶段可以采用有限差分法分析;在全塑性阶段可以按沙堆比拟的方法采用等倾曲面模拟;弹塑性阶段可以结合上述两种方法的结果和思路进行分析.利用差分法可以求出自由扭转截面内各离散点应力函数φ的数值解.本文推导了自由扭转的应力函数φ与J积分之间的关系,得出了自由扭转的应力函数与Ⅲ型裂纹的J积分之间的关系式.数值计算结果验证了本文方法的有效性和精确性.  相似文献   

10.
Summary  This paper presents an M-integral analysis for the microcracked anisotropic composite materials. By using an elementary solution derived for a single finite crack subjected to a concentrated force on crack faces, the problem of strong interacting, arbitrarily oriented and located microcracks in an anisotropic composite materials is reduced to a system of Fredholm integral equations. The crack-tip fracture parameters, such as the stress intensity factors, are evaluated from a numerical solution of the system of integral equations. Its dependence on the coordinate system, calculation, and physical interpretation of the M-integral are discussed in the interaction problem. Finally, a numerical example of the damage evaluation by the M-integral analysis is given. Received 24 September 1999; accepted for publication 8 February 2000  相似文献   

11.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

12.
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).  相似文献   

13.
The characterization and testing methods of the dynamic fracture initiation toughness of elastic-plastic materials under tensile impact are studied. By using the self-designed bar-bar tensile impact apparatus, a novel test method for studying dynamic fracture-initiation has been proposed based on the one-dimensional test principle. The curve of average loadv. s. displacement is smooth until unstable crack propagation, and the kinetic energy which does not contribute to the crack growth can be removed from total work done by external-force to the specimen. The fracture-initiation point is determined by compliance-changing rate method. The results show that these methods are feasible and effective. Through the analysis of the conversion between work and energy of a fracture specimen, the dynamicJ-integral is adopted as a characteristic parameter for elastic-plastic materials under impact loading. TheJ-integral is calculated from and curves by using the formula proposed, by Rice. TheJ-integral at fracture initiation is employed to describe the dynamic fracture-initiation toughness of elastic-plastic materials and the experimental results indicate thatJ ID can be regarded as a material constant.  相似文献   

14.
The present study is concerned with a nonlinear fracture analysis of trilayered beam built up by two unidirectional fiber-reinforced polymer composites. It is assumed that two interlaminar cracks exist between the layers. A tensile force applied to the middle layer generates pure mode II crack loading conditions. The J -integral approach is used to investigate the nonlinear fracture behavior of the beam. The elastic-linearly hardening model is applied to describe the mechanical behavior of the two composites. Sixth expressions for J -integral are derived using a beam theory model. These expressions correspond to the characteristic magnitudes of the external force. The validity of the formulae obtained is proved by comparison with the J -integral solution in the case of linear-elastic behavior of the composite materials. A numerical example is presented in order to demonstrate the ability of the expressions obtained for the analysis of nonlinear fracture in polymer composites.  相似文献   

15.
Earlier analysis given by T.M. Edmunds and J.R. Willis (1976) is extended to deal with cracks in elastic work-hardening plastic specimens subjected to longitudinal shear loads. Solutions are expressed in terms of a set of parameters that are determined from linear elastic solutions alone. It is proved, for any specimen geometry and any loading symmetric about the plane of the crack, that a ‘plastic-zone correction’, obtained by solving a linear elastic problem for a crack which is a length ry longer than the actual crack, provides a two-term asymptotic expansion for the J-integral, if ry is defined suitably in terms of the linear elastic stress concentration factor and the initial slope of the work-hardening curve. The general method is applied in detail to a strip of finite width containing an edge crack, for which the effect of the work-hardening on the maximum extent of the plastic zone and on the J-integral is summarized graphically.  相似文献   

16.
Because of the complexity of piezoelectric crack problems, it is hard to obtain closed-form solutions, and numerical methods are largely resorted to. Hence, the upper/lower bound estimation of piezoelectric fracture parameters is of theoretical and practical importance. in this paper, the path-independent integral I, which is the dual of the J-integral, for electro-mechanical coupling crack systems, is presented. The related bound theorems are established for J and I. Piezoelectric dual finite elements are presented for the numerical implementation of the bound analysis. Moreover, an error estimator is presented for the assessment of numerical accuracy of the piezoelectric fracture parameters.  相似文献   

17.
In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is presented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two decoupled singular integral equations and then these two equations are converted into algebraic equations to find the full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric field, electric displacement field and J-integral with respect to the normalized impermeable crack length are shown. Some discussions for the energy release rate and the J-integral are made.  相似文献   

18.
An integral expression that is domain independent in curvilinear coordinates and compatible with zero divergence of Eshelby's (Phil. Trans. Roy. Soc. (London) 244 (1951) 87.) energy momentum tensor was obtained from the principle of virtual work. By applying Eshelby's definition of the force on a material defect a general expression of the crack extension force for a curved crack in three dimensions, here called the F-integral, was derived from the domain independent integral expression. The F-integral is given explicitly for a number of curved cracks and found to be in agreement with previously known solutions, when available. The influence of crack surface and crack front curvature upon the various forms of the F-integral is discussed. The F-integral presented in this work is a generalisation of the J-integral (Rice, J. Appl. Mech. 35 (1968) 379.) to curved cracks in orthogonal curvilinear coordinates.  相似文献   

19.
The self-force and effective mass of a moving dislocation in a generally accelerating motion are explicitly obtained on the basis of a surface-independent dynamic J-integral. Logarithmic singularities due to non-zero acceleration result in divergent integrals in the dynamic J-integral, which are treated by smearing out the dislocation core (ramp-core) and by regularizing in the sense of distributions, both coinciding in the leading terms.  相似文献   

20.
Summary A variational principle is presented, which relates the macroscopic fracture response of a mechanical component to its microscopic, inelastic material behavior. The principle allows a comparison between the crack driving force, expressed by the J-integral, and an integral expression of the fracture resistance. On this basis, the critical values of J are calculated for a Griffith crack under mixed-mode loading. The preliminary check with data available in literature shows a fairly good agreement. Received 18 July 1998; accepted for publication 9 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号