首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, we directly extend the applications of the Adomian decomposition method to investigate the complex KdV equation. By choosing different forms of wave functions as the initial values, three new types of realistic numerical solutions: numerical positon, negaton solution, and particularly the numerical analytical complexiton solution are obtained, which can rapidly converge to the exact ones obtained by Lou et al. Numerical simulation figures are used to illustrate the efficiency and accuracy of the proposed method.  相似文献   

2.
We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics (amongst other areas). In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions (in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature). The resulting boundary value problem is solved on the real line subject to conditions at z → ±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods (designed for initial and boundary value problems, respectively) and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence (which is governed by a power-law parameter m) on oscillations of the travelling wave solutions.  相似文献   

3.
The sinh-Gordon equation expansion method is further extended by generalizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

4.
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schrödinger (VCNLS) equation to the usual nonlinear Schrödinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is
introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically.
The main differences between the two types of transformation mentioned above are listed by three items.  相似文献   

5.
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e.,the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.  相似文献   

6.
We consider cnoidal traveling wave solutions to the focusing nonlinear Schrödinger equation (NLS) that have been shown to persist when the NLS is perturbed to the complex Ginzburg-Landau equation (CGL). We show that while these periodic traveling waves are spectrally stable solutions of NLS with respect to periodic perturbations, they are unstable with respect to bounded perturbations. Furthermore, we use an argument based on the Fredholm alternative to find an instability criterion for the persisting solutions to CGL.  相似文献   

7.
As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.  相似文献   

8.
A scheme is developed to study numerical solution of the time-fractional shock wave equation and wave equation under initial conditions by the homotopy perturbation method (HPM). The fractional derivatives are taken in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical results are illustrated through the graph.  相似文献   

9.
A new generalized transformation method is presented to find more exact solutions of nonlinear partial differential equation. As an application of the method, we choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.  相似文献   

10.
A (3+1)-dimensional Gross-Pitaevskii (GP) equation with time variable coefficients is considered, and is transformed into a standard nonlinear Schrödinger (NLS) equation. Exact solutions of the (3+1)D GP equation are constructed via those of the NLS equation. By applying specific time-modulated nonlinearities, dispersions, and potentials, the dynamics of the solutions can be controlled. Solitary and periodic wave solutions with snaking and breathing behavior are reported.  相似文献   

11.
In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.  相似文献   

12.
蒋涛  黄金晶  陆林广  任金莲 《物理学报》2019,68(9):90203-090203
为提高传统光滑粒子动力学(SPH)方法求解高维非线性薛定谔(nonlinear Schr?dinger/Gross-Pitaevskii equation, NLS/GP)方程的数值精度和计算效率,本文首先基于高阶时间分裂思想将非线性薛定谔方程分解成线性导数项和非线性项,其次拓展一阶对称SPH方法对复数域上线性导数部分进行显式求解,最后引入MPI并行技术,结合边界施加虚粒子方法给出一种能够准确、高效地求解高维NLS/GP方程的高阶分裂修正并行SPH方法.数值模拟中,首先对带有周期性和Dirichlet边界条件的NLS方程进行求解,并与解析解做对比,准确地得到了周期边界下孤立波的奇异性,且对提出方法的数值精度、收敛速度和计算效率进行了分析;随后,运用给出的高阶分裂粒子方法对复杂二维和三维NLS/GP问题进行了数值预测,并与其他数值结果进行比较,准确地展现了非线性孤立波传播中的奇异现象和玻色-爱因斯坦凝聚态中带外旋转项的量子涡旋变化过程.  相似文献   

13.
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.  相似文献   

14.
In this paper,a new approach is devoted to find novel analytical and approximate solutions to the damped quadratic nonlinear Helmholtz equation(HE)in terms of the Weiersrtrass elliptic function.The exact solution for undamped HE(integrable case)and approximate/semi-analytical solution to the damped HE(non-integrable case)are given for any arbitrary initial conditions.As a special case,the necessary and sufficient condition for the integrability of the damped HE using an elementary approach is reported.In general,a new ansatz is suggested to find a semi-analytical solution to the non-integrable case in the form of Weierstrass elliptic function.In addition,the relation between the Weierstrass and Jacobian elliptic functions solutions to the integrable case will be derived in details.Also,we will make a comparison between the semi-analytical solution and the approximate numerical solutions via using Runge-Kutta fourth-order method,finite difference method,and homotopy perturbation method for the first-two approximations.Furthermore,the maximum distance errors between the approximate/semi-analytical solution and the approximate numerical solutions will be estimated.As real applications,the obtained solutions will be devoted to describe the characteristics behavior of the oscillations in RLC series circuits and in various plasma models such as electronegative complex plasma model.  相似文献   

15.
In this Letter, we obtained solutions to a class of density dependent diffusion Nagumo equations. In particular, series solutions are obtained, along with a bound for the range of the convergence. Also, numerical solutions are obtained by the Runge-Kutta-Fehlberg 45 method. Moreover, the dependence of the traveling wave solutions on various parameters is discussed. Furthermore, we compare the series solutions with the numerical solutions to validate the numerical method. The results obtained in this study reveal many interesting behaviors that warrant further study on the Nagumo equation.  相似文献   

16.
Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on. It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.  相似文献   

17.
Exact Periodic-Wave Solutions to Nizhnik-Novikov-Veselov Equation   总被引:2,自引:0,他引:2  
Exact periodic-wave solutions to the generalized Nizhnik-Novikov-Veselov (NNV) equation are obtained by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equation are also obtained.  相似文献   

18.
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

19.
Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.  相似文献   

20.
New Exact Travelling Wave Solutions to Kundu Equation   总被引:1,自引:0,他引:1  
Based on a first-order nonlinear ordinary differential equation with Six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号