首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research.  相似文献   

2.
This investigation examines the magnetorheological (MR) characteristics of Fe3O4 aqueous suspensions. Magnetite particles (Fe3O4) were synthesized using a colloidal process and their sizes were determined to be normally distributed with an average of 10 nm by TEM. Experimental results reveal that the MR effect increases with the magnetic field and suspension concentration. The yield stress increases by up to two orders of magnitude when the sample is subjected to a magnetic field of 146 Oe/mm. In comparison with other published results, concerning a concentration of approximately 10–15% v/v, this study demonstrates that the same increase can be obtained with a concentration of nano-scale particles as low as 0.04% by volume. The viscosity was increased by an order of magnitude while the shear rate remained low; however, the increase decayed rapidly as the shear rate was raised. Finally, the MR effect caused by DC outperformed that caused by AC at the same current.  相似文献   

3.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

4.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

5.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

6.
7.
Nanobiotechnology has opened a new and exciting opportunities for exploring urea biosensor based on magnetic nanoparticles (NPs) mainly Fe3O4 and Co3O4. These NPs have been extensively exploited to develop biosensors with stability, selectivity, reproducibility and fast response time. This review gives an overview of the development of urea biosensor based on Fe3O4 and Co3O4 for in vitro diagnostic applications along with significant improvements over the last few decades. Additionally, effort has been made to elaborate properties of magnetic nanoparticles (MNPs) in biosensing aspects. It also gives details of recent developments in hybrid nanobiocomposite based urea biosensor.  相似文献   

8.
Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.  相似文献   

9.
The authors describe an aptamer-based fluorescent assay for adenosine (Ade). It is based on the interaction between silver nanoparticles (AgNPs) and CdTe quantum dots (QDs). The beacon comprises a pair of aptamers, one conjugated to Fe3O4 magnetic nanoparticles, the other to AgNPs. In the presence of Ade, structural folding and sandwich association of the two attachments takes place. After magnetic separation, the associated sandwich structures are exposed to the QDs. The AgNPs in sandwich structures act as the signaling label of Ade by quenching the fluorescence of QDs (at excitation/emission wavelengths of 370/565 nm) via inner filter effect, electron transfer and trapping processes. As a result, the fluorescence of QDs drops with increasing Ade concentration. The assay has a linear response in the 0.1 nM to 30 nM Ade concentration range and a 60 pM limit of detection. The assay only takes 40 min which is the shortest among the aptamer-based methods ever reported. The method was successfully applied to the detection of Ade in spiked biological samples and satisfactory recoveries were obtained.
Graphical abstract Schematic of a highly efficient and convenient adenosine (Ade) fluorometric assay. It is based on the interaction between Ag nanoparticles (NPs) and CdTe quantum dots (QDs). Ade aptamers (ABA1 and ABA2) are used as recognition unit and Fe3O4 magnetic nanoparticles act as magnetic separator. The assay exhibits superior sensitivity and speediness.
  相似文献   

10.
Using Fe3O4 nano-particles as seeds, a new type of Fe3O4/Au composite particles with core/shell structure and diameter of about 170 nm was prepared by reduction of Au3+ with hydroxylamine in an aqueous solution. Particle size analyzer and transmission electron microscope were used to analyze the size distribution and microstructure of the particles in different conditions. The result showed that the magnetically responsive property and suspension stability of Fe3O4 seeds as well as reduction conditions of Au3+to Au0are the main factors which are crucial for obtaining a colloid of the Fe3O4/Au composite particles with uniform particle dispersion, excellent stability, homogeneity in particle sizes, and effective response to an external magnet in aqueous suspension solutions. UV-Vis analysis revealed that there is a characteristic peak of Fe3O4/Au fluid. For particles with d(0.5)=168 nm, the λmax is 625 nm.  相似文献   

11.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

12.
13.
An electrochemical microsensor for chloramphenicol (CAP) was fabricated by introducing magnetic Fe3O4 nanoparticles (NPs) onto the surface of activated carbon fibers. This microsensor exhibited increased electrochemical response toward CAP because of the synergetic effect of the Fe3O4 NPs and the carbon fibers. Cyclic voltammograms were acquired and displayed three stable and irreversible redox peaks in pH 7.0 solution. Under optimized conditions, the cathodic current peaks at ?0.67 V (vs. Ag/AgCl). The calibration plot is linear in the 40 pM to 1 μM CAP concentration range, with a 17 pM detection limit (at a signal-to-noise ratio of 3). The sensor was applied to the determination of CAP in spiked sediment samples. In our perception, this electrocatalytic platform provided a useful tool for fast, portable, and sensitive analysis of chloramphenicol.
Graphical abstract A sensitive carbon fiber microsensor modified with Fe3O4 nanoparticles is found to display two cathodic peaks when detecting chloramphenicol at 100 mV·s?1 and at pH 7.0. The sensor was applied to the determination of chloramphenicol in sediment samples.
  相似文献   

14.
The synthesis of rattle-type nanostructured Fe3O4@SnO2 is described along with their application to dispersive solid-phase extraction of trace amounts of mercury(II) ions prior to their determination by continuous-flow cold vapor atomic absorption spectrometry. The voids present in rattle-type structures make the material an effective substrate for adsorption of Hg(II), and also warrant high loading capacity. The unique morphology, large specific surface, magnetism property and the synergistic effect of magnetic cores and SnO2 shells render these magnetic nanorattles an attractive candidate for solid-phase extraction of heavy metal ions.The sorbent was characterized by transmission electron microscopy, scanning electron microscopy, FTIR, energy-dispersive X-ray spectroscopy and by the Brunnauer-Emmett-Teller technique. The effects of pH value, adsorption time, amount of sorbent, volume of sample solutions, concentration and volume of eluent on extraction efficiencies were evaluated. The calibration plot is linear in the 0.1 to 40 μg·L?1 concentration range, and the preconcentration factor is 49. The detection limit is 28 ng·L?1. The sorbent was applied to the analysis of (spiked) river and sea water samples. Recoveries ranged from 97.2 to 100.5%.
Graphical abstract A yolk-shell structure based on a Fe3O4 core and SnO2 shell was developed as an efficient MSPE sorbent. A middle silica layer was etched by alkaline solution. The resulting sorbent was utilized for preconcentration of mercury ions from aqueous media.
  相似文献   

15.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

16.
The interaction between stabilizers and nanoparticles is one of the important factors to prepare stable magnetic fluids. The magnetic nano-size Fe3O4 core with single domain and the average grain size around 8–12 nm were prepared by chemical precipitation method. The O/Fe molar ratio of the particle surface was measured by X-ray photoelectron spectroscopy (XPS). The heat effects of stabilizers adsorption on nanoparticles were measured by solution calorimetry. The excess amount of oxygen was possibly the result of the hydroxygen formed on the surface of the nanoparticles. The heat effects showed that compounds containing carboxyl groups can be adsorbed chemically on magnetite by forming chemical bonds. The other stabilizers involving NH-groups, such as polyethylene-imine, can be adsorbed physically. The exothermic value is about half of the former case. Supported by the National Natural Science Foundation of China (Grant No. 50476039), and Guangdong Provincial Department of Science and Technology (Grant No. 2004A10-703001)  相似文献   

17.
Hybrid nanoparticles based on Fe3O4 and CdS combining magnetic and luminescence properties were synthesized. The possibility of visualization of various cells by 3-mercaptopropylsilane-modified CdS nanoparticles and hybrid nanoparticles based on them using a confocal microscope was demonstrated. The synthesized materials did not show a clear-cut cytotoxicity.  相似文献   

18.
In the present paper, L-phenyl alanine has been successfully linked on the surface of magnetic nanoparticles and has been characterized by FT-IR, XRD, SEM, EDS, TGA, and VSM techniques. This new catalyst was employed for one-pot synthesis of chromenes through the reaction of aldehydes, 4-hydroxycoumarin, and 2-hydroxynaphthalene-1,4-dione. Significant features of this method are short reaction time, excellent yields, use of green method, and the use of an effective and novel catalyst that could be recovered and reused several times without loss of its catalytic activity.  相似文献   

19.
Sulfonated polyvinylchloride (SPVC) cation-exchange membranes were coated using chitosan solutions comprising different amounts of Fe3O4 nanoparticles. Influence of chitosan immobilization as well as nanofiller concentration on the electrochemical performance of the membranes was investigated. Electrochemical properties of the membranes including permselectivity, ionic permeability, and areal resistance were studied using an equipped electrodialysis setup and NaCl solution as model electrolyte. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were employed for membrane characterization. Electrochemical performance of the SPVC membranes was improved by coating chitosan polymer. In addition, ionic permeability and permselectivity of the membranes were initially raised by increasing nanoparticles concentration from nil to 2 wt% and then decreased by further insertion of the nanofiller. The areal resistance of the plain SPVC membrane was decreased from 9.4 to 2.9 (ohm) by coating of chitosan solution including optimum value of nano-Fe3O4 due to electrical potential field enhancement across the membrane.
Graphical Abstract Chitosan-coated cation-exchange membranes for electrodialysis process
  相似文献   

20.
Adsorption characteristics and doxycycline (DC) removal efficiency of Fe3O4 magnetic nanoparticles as adsorbents have been determined by investigating the effects of pH, concentration of the DC, amount of adsorbents, contact time, ionic strength and temperature. The mechanism of adsorption was also studied. The adsorption of DC to the Fe3O4 magnetic nanoparticles could be described by Langmuir-type adsorption isotherms. Short contact time between the reagents, reusability of Fe3O4 for three times after recycling of the nanoparticles, good precision and accuracy, wide working pH range and high breakthrough volume are among the highlights of this procedure. The proposed extraction and determination procedure based on magnetic nanoparticles as adsorbent was successfully applied to the determination of DC spiked in honey and various water samples. The method presented here is fast, simple, cheap and robust, and it does not require the use of organic solvents. Also, the method needs only a magnet and can be performed in any laboratory without sophisticated equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号