首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfactant loss due to adsorption on the porous medium of an oil reservoir is a major concern in enhanced oil recovery. Surfactant loss due to adsorption on the reservoir rock weakens the effectiveness of the injected surfactant in reducing oil–water interfacial tension (IFT) and making the process uneconomical. In this study, surfactant concentrations in the effluent of the corefloods and oil–water IFT were determined under different injection strategies. It was found that in an extended waterflood following a surfactant slug injection, surfactant desorbed in the water phase. This desorbed surfactant lasted for a long period of the waterflood. The concentration of the desorbed surfactant in the extended waterflood was very low but still an ultralow IFT was obtained by using a suitable alkali. Coreflood results show an additional recovery of 13.3% of the initial oil in place was obtained by the desorbed surfactant and alkali. Results indicate that by utilizing the desorbed surfactant during the extended waterflood operation the efficiency and economics of the surfactant flood can be improved significantly.  相似文献   

2.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

3.
For applications where droplet breakup and surfactant adsorption are strongly coupled, a diffuse interface model is developed. The model is based on a free energy functional, partly adapted from the sharp interface model of [Diamant and Andelman 34(8):575–580, (1996)]. The model is implemented as a 2D Lattice Boltzmann scheme, similar to existing microemulsion models, which are coupled to hydrodynamics. Contrary to these microemulsion models, we can describe realistic adsorption isotherms, such as the Langmuir isotherm. From the free energy, functional analytical expressions of equilibrium properties are derived, which compare reasonably with numerical results. Interfacial tension lowering scales with the logarithm of the area fraction of the interface unloaded with a surfactant: . Furthermore, we show that adsorption kinetics are close to the classical relations of Ward and Tordai. Prelimary simulations of droplets in shear flow show promising results, with surfactants migrating to interfacial regions with highest curvature. We conclude that our diffuse interface model is very promising for apprehending the above-mentioned applications as membrane emulsification. Paper presented at the Annual European Rheology Conference (AERC) 2005, April 21–23, Grenoble, France.  相似文献   

4.
We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil by water containing bacteria and substrate for their feeding. The bacterial products are both bacteria and metabolites. In the context of MEOR modeling, a novel approach is partitioning of metabolites between the oil and the water phases. The partitioning is determined by a distribution coefficient. The transfer part of the metabolite to oil phase is equivalent to its ”disappearance,” so that the total effect from of metabolite in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation. The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations of bacteria and substrate, thus determining the final recovery. Different methods for incorporating surfactant-induced reduction of interfacial tension into models are investigated. We have suggested one method, where several parameters can be estimated in order to obtain a better fit with experimental data. For all the methods, the incremental recovery is very similar, only coming from small differences in water phase saturation profiles. Overall, a significant incremental oil recovery can be achieved, when the sensitive parameters in the context of MEOR are carefully dealt with.  相似文献   

5.
In the first part of this work (Dong et al., Transport Porous Media, 59, 1–18, 2005), an interacting capillary bundle model was developed for analysing immiscible displacement processes in porous media. In this paper, the second part of the work, the model is applied to analyse the fluid dynamics of immiscible displacements. The analysis includes: (1) free spontaneous imbibition, (2) the effects of injection rate and oil–water viscosity ratio on the displacement interface profile, and (3) the effect of oil–water viscosity ratio on the relative permeability curves. Analysis of a non-interacting tube bundle model is also presented for comparison. Because pressure equilibration between the capillaries is stipulated in the interacting capillary model, it is able to reproduce the behaviour of immiscible displacement observed in porous media which cannot be modelled by using non-interacting tube bundle models.  相似文献   

6.
The ubiquitous surfactant significantly influences the hygroscopic growth of atmospheric aerosol particles. However, knowledge on the morphology of surfactant particles after the adsorption of water is insufficient. In this study, the interaction between water and particles composed of surface active malonic acid (MA) or adipic acid (AA) are simulated based on the molecular dynamics method. The key point is the combined effect of temperature and water content on the structural properties of particles and the surface propensity of surfactants at the equilibrium state. Results show that demixed structure 1 with the adsorption of water clusters on acid grain, mixed structure and demixed structure 2 with acids coating on water droplet can be observed. With temperature increasing from 160 K to 330 K the surface propensity of MA and AA increases first and then weakens. Near the standard atmospheric temperature (280–330 K), the surface propensity of MA and AA increases with increasing water content and alkyl group, and its sensitivity to temperature and water content varies regularly. Moreover, all surfactants at the particle surface orient their hydrophobic groups toward the gas. These findings improve our insight into the surfactant partitioning and further assist in more accurate prediction of the particle hygroscopic growth.  相似文献   

7.
In the present study the velocity profiles and the instability at the interface of a two phase water-oil fluid were investigated. The main aim of the research project was to investigate the instability mechanisms that can cause the failure of an oil spill barrier. Such mechanisms have been studied before for a vast variety of conditions (Wicks in Fluid dynamics of floating oil containment by mechanical barriers in the presence of water currents. In: Conference on prevention and control of oil spills, pp 55–106, 1969; Fannelop in Appl Ocean Res 5(2):80–92, 1983; Lee and Kang in Spill Sci Technol Bull 4(4):257–266, 1997; Fang and Johnston in J Waterway Port Coast Ocean Eng ASCE 127(4):234–239, 2001; among others). Although the velocity field in the region behind the barrier can influence the failure significantly, it had not been measured and analyzed precisely. In the present study the velocity profiles in the vicinity of different barriers were studied. To undertake the experiments, an oil layer was contained over the surface of flowing water by means of a barrier in a laboratory flume. The ultrasonic velocity profiler method was used to measure velocity profiles in each phase and to detect the oil–water interface. The effect of the barrier geometry on velocity profiles was studied. It was determined that the contained oil slick, although similar to a gravity current, can not be considered as a gravity current. The oil–water interface, derived from ultrasonic echo, was used to find the velocity profile in each fluid. Finally it was shown that the fluctuations at the rearward side of the oil slick head are due to Kelvin–Helmholtz instabilities.  相似文献   

8.
We report the behavior of thermosensitive soft microgel particles adsorbed at the air–water interface. We study the effect of temperature on the adsorption, interfacial diffusion, and surface rheology of pure N-isopropylacrylamide (NiPAM) microgel particles at the air–water interface. We find that the surface tensions of the solutions are the same as those of polyNiPAM solution; hence, their adsorption properties are dominated by the surface activity of the NiPAM repeat units of the particles. Particle-tracking experiments show that the particles adsorb irreversibly at the interface and form stable clusters at very low concentrations, e.g., 5.10-3 wt%. We suggest that attractions between dangling arms or capillary interaction may be responsible for the formation of these clusters. For concentrations above 10-2 wt%, the interface is filled with particles, and their Brownian diffusivity is arrested. The compression elastic moduli—measured using the pendant drop method—are one or two orders of magnitude below those obtained for hard particles and NiPAM chains, and their value is probably dominated by the intrinsic compressibility of the particles. The thin liquid films made from microgels exhibit a symmetric drainage, consistent with a high surface viscosity, but their lifetime is surprisingly short, illustrating the fragility of the films. We observed the formation of a monolayer of microgels bridging the two interfaces of the film outside the dimple. This zone grows and thins over time to a point where the microgels are highly compressed and stretched, resulting in the rupture of the film.  相似文献   

9.
The displacement of oil by anionic surfactant solutions in oil-wet horizontal capillary tubes is studied. The position of the oil–water interface is recorded with time. The surfactant solution used is a mixture of several different surfactants and co-solvents tailored to produce ultra-low interfacial tension (IFT) for the specific oil used in the study. The surfactant solution results in ultra-low IFT at optimum salinity and room temperature. Several experimental parameters including the capillary tube radius and surfactant solution viscosity are varied to study their effect on the interface speed. Two different models are used to predict the oil–water interface position with time. In the first model, it is assumed that the IFT is constant and ultra-low throughout the experiments. The second model involves change of wettability and IFT by adsorption of surfactant molecules to the oil–water interface and the solid surface. Comparing the predictions to the experimental results, it is observed that the second model provides a better match, especially for smaller capillary tubes. The model is then used to predict the imbibition rate for very small capillary tubes, which have equivalent permeability close to oil reservoirs. The results show that the oil displacement rate is limited by the rate of diffusion of surfactants to the interface.  相似文献   

10.
Coating colours used for the coating of paper and board consist mainly of a mineral pigment, which is very often clay, a synthetic binder such as a styrenebutadiene latex, dispersion agents and water retention aids. The latter are often water soluble polymers. These polymers have a very strong influence on the rheological properties of the coating colours, both on the strain rate dependence of the apparent viscosity and on the viscoelasticity. The effects of two different grades of carboxymethylcellulose (CMC) and one grade of hydroxyethylcellulose (HEC), on the rheological properties at room temperature of a clay-based coating colour at pH 8, have been investigated. It is concluded that the high values of the dynamic modulus of the colours are due to interactions between the cellulose derivatives and the solid particles, i.e. mainly the clay particles. For HEC this interaction is associated with adsorption of the polymeric molecules on the clay particles. In the case of CMC, the adsorption is strongly retarded by the presence of the dispersant (a polyacrylate salt). It is suggested that the marked elasticity of the CMC-containing colour in addition to a possible polymer adsorption may be due to charge interactions and/or depletion flocculation. The effect of CMC and HEC on the water-retention properties of the colour is also discussed.  相似文献   

11.
Spatiotemporal filter velocimetry (SFV) was extended to Lagrangian measurements with boundary-fitted measurement areas, and was applied to flows about single spherical drops of glycerol-water solution falling in stagnant silicon oil under clean and contaminated conditions to examine its applicability to the estimation of the Marangoni stress and surfactant concentration at a moving interface. Effects of bulk concentration of surfactant on the velocity field, the Marangoni stress and the surface concentration of surfactant were discussed from the measured data. As a result, we confirmed that accurate velocity distribution in the vicinity of the interface measured by SFV enables us to evaluate interfacial velocity and interfacial shear stresses and to estimate the Marangoni stress, interfacial tension and surfactant concentration at the interface with the assumption of negligible surface viscosity. The flow inside the drop and the interfacial velocity become weak due to the Marangoni stress caused by the gradient of surfactant concentration at the interface as the bulk concentration of surfactant increases. These results demonstrate that SFV is of great use in experimental analysis of adsorption and desorption kinetics at a moving interface.  相似文献   

12.
The localization of nanoclay particles dispersed in the oil phase of a model oil-in-water emulsion depends on the wetting property of layered nanoparticles. Investigation at a single droplet interface shows that nanoclay is located at different interfacial regions depending on the hydrophilic property of the nanoclay surface. Hydrophobic nanoclays do not present Pickering phenomena at the interface and hardly form an interfacial layer. Hydrophilic nanoclay particles quickly move to the interface and form a Pickering interface with a high interfacial shear modulus. With surfactant, poor hydrophilic nanoclays can be located at the interface due to improvement of the wetting behavior caused by the surfactants dissolved in the aqueous continuous phase. With ionic molecules changing the wetting behavior of particles, the interfacial localization of nanoclays can be controlled and improve the mechanical property of emulsion.  相似文献   

13.
In Part I Moyne and Murad [Transport in Porous Media 62, (2006), 333–380] a two-scale model of coupled electro-chemo-mechanical phenomena in swelling porous media was derived by a formal asymptotic homogenization analysis. The microscopic portrait of the model consists of a two-phase system composed of an electrolyte solution and colloidal clay particles. The movement of the liquid at the microscale is ruled by the modified Stokes problem; the advection, diffusion and electro-migration of monovalent ions Na+ and Cl are governed by the Nernst–Planck equations and the local electric potential distribution is dictated by the Poisson problem. The microscopic governing equations in the fluid domain are coupled with the elasticity problem for the clay particles through boundary conditions on the solid–fluid interface. The up-scaling procedure led to a macroscopic model based on Onsager’s reciprocity relations coupled with a modified form of Terzaghi’s effective stress principle including an additional swelling stress component. A notable consequence of the two-scale framework are the new closure problems derived for the macroscopic electro-chemo-mechanical parameters. Such local representation bridge the gap between the macroscopic Thermodynamics of Irreversible Processes and microscopic Electro-Hydrodynamics by establishing a direct correlation between the magnitude of the effective properties and the electrical double layer potential, whose local distribution is governed by a microscale Poisson–Boltzmann equation. The purpose of this paper is to validate computationally the two-scale model and to introduce new concepts inherent to the problem considering a particular form of microstructure wherein the clay fabric is composed of parallel particles of face-to-face contact. By discretizing the local Poisson–Boltzmann equation and solving numerically the closure problems, the constitutive behavior of the diffusion coefficients of cations and anions, chemico-osmotic and electro-osmotic conductivities in Darcy’s law, Onsager’s parameters, swelling pressure, electro-chemical compressibility, surface tension, primary/secondary electroviscous effects and the reflection coefficient are computed for a range particle distances and sat concentrations.  相似文献   

14.
Pickering emulsions are emulsions whose drops are stabilized against coalescence by particles adsorbed at their interface. Recent research on oil/water/particle systems shows that particles can sometimes adsorb at two oil/water interfaces. Such “bridging particles” can glue together drops of oil in water or vice versa. We hypothesize that the same effect should apply in immiscible polymer blends with droplet-matrix morphologies, viz., added particles should glue together drops and give rise to particle-bridged drop clusters. We test this hypothesis in PIB-in-PDMS blends [PIB, poly(isobutylene); PDMS, poly(dimethylsiloxane)] with fumed silica particles. Direct visualization shows that the particles can indeed induce clustering of the drops, and the blends appear to show gel-like behavior. Such gel-like behavior is confirmed by dynamic oscillatory experiments. However, we are unable to conclusively attribute the gel-like behavior to droplet clustering: Association of the fumed silica particles in the bulk, which itself causes gel-like behavior, confounds the results and prevents clear analysis of the gluing effect of the particles. We conclude that PIB/PDMS/fumed silica is not a good model system, for studying particle-containing polymer blends. We instead propose that spherical monodisperse silica particles can offer a far more convenient model system, and provide direct visual evidence of gluing of PIB drops in a PDMS matrix.  相似文献   

15.
Drainage and deformation of the intervening film can arguably represent the dynamic nature of colliding soft matters. The development of an interaction force analysis between soft interfaces helps to probe the drop deformation and the interfacial properties. Based on the SRYL model, the fluid flow inside the droplet and the convection-diffusion of the surfactant at the oil-water interface is coupled to model the distribution of a non-ionic surfactant (Span80) during drop deformation using AFM. This study quantifies the in situ interfacial concentration with a trace amount of surfactant at the interface and indicates its effect on the interaction forces between two immersed oil droplets in an aqueous solution.  相似文献   

16.
The viscosity of small fluid droplets covered with a surfactant is determined using drop deformation techniques. This method, proposed by Hu and Lips, is here extended to the case of the presence of a surface-active adsorpted at the liquid–liquid interface, to consider more general scenarios. In these experiments, a droplet is sheared by another immiscible fluid of known viscosity, both Newtonian liquids. From the steady-state deformation and retraction mechanisms, the droplet viscosity is calculated using an equation derived from the theories of Taylor and Rallison. Although these theories were expressed for surfactant-free interfaces, they can be applied when a surfactant is present in the system if the sheared droplet reaches reliable steady-state deformations and the surfactant attains its equilibrium adsorption concentration. These determinations are compared to bulk viscosities measured in a rheometer for systems with different viscosity ratios and surfactant concentrations. Very good agreement between both determinations is found for drops more viscous than the continuous phase.  相似文献   

17.
The effect of low-volume fractions of nanoparticles on the morphological processes and the rheological properties of immiscible blends are dis cussed. For blends of poly-isobutylene and poly-dimethylsiloxane stabilized by silica particles, particles help to suppress coalescence. Yet, particle bridging of different droplets has also been reported and leads to a slow build up of a gel-like structure, which could interfere with the morphology evolution under flow. We first investigated the importance of this effect under relevant conditions. To further assess the relative importance of the different processes in technically relevant polymer–polymer blends, the effect of carbon black particles on morphological processes—coalescence and break-up—in polyamide and ethylene–ethylene–metylacrylate copolymers will be studied using rheological methods. It will be shown that particles affect coalescence and break-up, suggesting that the effect of particles is linked to their effect on interfacial dynamics.  相似文献   

18.
We present experimental results showing that large amplitude capillary waves at a liquid–vapour interface substantially enhance the interfacial heat and mass transfer. The experiments have been conducted in a circular cylinder that is partially filled with a wetting liquid of low boiling point temperature and pressurized by its vapour. The interfacial capillary waves are sub-harmonically excited by oscillating the circular cylinder at 50 Hz with forcing amplitude A in the direction normal to the liquid surface. The upper part of the test cell containing the vapour is heated to a temperature slightly below the boiling point temperature at the operating pressure. When the interface is at rest, the pressure decrease due to condensation is small. However, in the presence of interfacial capillary waves the rate of pressure decrease is substantial. The results show that the vapour condensation rate with respect to the diffusive vapour flux at an undisturbed interface, which is a Nusselt number, increases with the square of the wave amplitude that is proportional to the forcing amplitude. A model is developed that expresses the pressure variation in terms of Jacob number, the temperature gradient in the liquid at the interface and the capillary wave motion. This model allows extrapolation of the results to other fluids and configurations.  相似文献   

19.
 A system of two stratified layers at a free surface, consisting of distilled water above a layer of salty water separated by an interface, is studied under laboratory conditions involving uniform temperature heating from below. Shadowgraph and particle images have been used with temperature and salt concentration measurements to investigate the interface instability induced by convection when it is developing in the upper and lower layer. It is found that the interface is governed by local shear flow that induces a Kelvin–Helmholtz instability. Moreover, the entrainment interface is subject to a combination of two closely related effects: (1) double diffusion and convective motion and (2) double diffusion and Kelvin–Helmholtz instability. Received: 22 December 1999/Accepted: 31 October 2000  相似文献   

20.
As an attempt to develop a sensitive device for biomolecule detection, a micromechanical methodology based on the rheological change of an air–water interface is put forward (Berthier and Davoust, CEA/CNRS patent, PCT International Application WO 2003/080209 A3, 2003). Capillary waves induced from the vertical electrodynamic vibration of a brimful cylindrical tank filled with water stand as a good way to identify dilational elasticity and viscosity of an aging interface. Before, we were interested of the fact that complex wave number and the frequency of waves are obtained through an optical technique, which allows us to accurately recognize the whole interface geometry. These two parameters, a modeling based on a dispersion relation (Lucassen-Reynders and Lucassen, Adv Colloid Interface Sci, 2:347, 1969) and the surface mass transport equation, are jointly used to identify the surface diffusivity and the dilational rheology of the interface for a nonsoluble biochemical surfactant. Preliminary results obtained from a water surface functionalized by DNA, thanks to a lipidic monolayer, demonstrate the capabilities of the proposed methodology. The sensitivity of dilational rheology and the surface diffusivity on DNA adsorption on lipids is made evident.This paper was presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号