共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometries of ten benzenoid energetic materials are fully optimized by employing B3LYP and B3P86 methods with the 6–31G** basis set. Bond dissociation energies (BDEs) for the removal of the NO2 group in benzenoid molecules are calculated at the same level. The calculation results show that the insertion of an electron withdrawing group increases the stability of the molecules, while the insertion of an electron donating group reduces the stability of the molecules. In addition, the relationship between the impact sensitivities and the weakest BDE values is examined. There exists a good linear correlation between the impact sensitivity and the ratio of the BDE value to the molecular total energy. 相似文献
2.
Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds 总被引:10,自引:0,他引:10
A new method of calculating the Mulliken net charges of the nitro group, Q(NO)()2, to assess impact sensitivities for nitro compounds is established. All calculations including optimizations and Mulliken population and frequency analyses are performed by density functional theory (DFT) and the general gradient approximation (GGA) method in Acceryls' code Dmol(3) with the Beck-LYP hybrid functional and the DNP basis set. As a result, the charges on nitro group can be regarded as a structural parameter to estimate the impact sensitivity on the bond strength, oxygen balance, and molecular electrostatic potential. The compound with more -Q(NO)()2 will be insensitive and gives a large value of impact sensitivity H(50)(). This method considering the molecular structure is applicable for almost all nitro compounds when the C-NO(2), N-NO(2), or O-NO(2) bond is the weakest in the molecule. According to the results in this paper, the compounds with -Q(NO)()2 >0.23e show H(50)() = 0.4 m. 相似文献
3.
J. Tam s G. Czira
A. K. Maltsev
O. M. Nefedov 《Journal of organometallic chemistry》1972,40(2):311-316The mass spectra of the methylchlorogermanes and the (chloromethyl)-trichlorogermanes are described and analysed. It is shown by consideration of the ionisation and appearance potentials that the surprisingly high abundance of (M---Cl)+ ions in the spectrum of Cl3GeCH3 is due to a large decrease of the Ge---Cl bond strength in the molecular ions of methylchlorogermanes with increase in the number of Cl atoms on Ge. Calculated bond energies indicate that this phenomenon reflects Ge---Cl bond energy differences in the neutral molecules. 相似文献
4.
Bond dissociation energies are frequently derived from values of the high pressure activation energy for bond scission reactions. The value derived depends on the transition state structure chosen for the reaction. We consider several models of the transition state and show that the variation in derived BDE values can be quite substantial, 3 to 6 kcal/mol at the high temperatures of pyrolysis kinetics. Application of the restricted Gorin model of the transition state results in BDE values in good agreement with current thermochemistry, while the other models tested result in lower to much lower values. © 1994 John Wiley & Sons, Inc. 相似文献
5.
Jun Zhao Kunshi Zhang Xinlu Cheng Xiangdong Yang 《Journal of Molecular Structure》2008,863(1-3):133-136
The CCN bond distances and bond dissociation energies (BDEs) are estimated by utilizing quantum chemical calculations for 16 nitrile compounds. Since DFT methods have been researched to have low basis sets sensitivity for small and medium molecules in our earlier work [Jun Zhao, Xinlu Cheng, Xiangdong. Yang, J. Mol. Struct. (Theochem) 766 (2006) 87] 16 nitrile compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) and the complete basis set (CBS-Q) method in conjunction with the 6-311G** basis set. The obtained results are compared with the available experimental data. It is demonstrated that CBS-Q method, which can produce reasonable BDEs for some systems, seems unable to predict accurate BDEs here. While, the B3P86 calculated results agree very well with the experimental values. So B3P86 method is suitable for computing the reliable BDEs of CCN bond for nitrile compounds. 相似文献
6.
The C−NO2 bond dissociation energies in nitrobenzene; 3-amino-nitrobenze; 4-amino-nitrobenze; 1,3-dinitrobenzene; 1,4-dinitrobenzene;
2-methyl-nitrobenzene; 4-methyl-nitrobenzene; and 1,3,5-trinitrobenzene nitroaromatic molecules, are computed using B3LYP,
B3PW91, B3P86 three-parameter hybrid Density Functional Theory (DFT) methods in conjunction with 6-31G** basis set. By comparing the computed energies and experimental ones, it is found that B3P86/6-31G** is not capable of predicting the satisfactory bond dissociation energy (BDE). The BDEs computed with both B3LYP/6-31G** and B3PW91/6-31G** for the nitroaromatic molecules are closer to the experimental ones than those obtained with B3P86/6-31G**. But, when compared with the experimental one, the BDE from the B3LYP/6-31G** has the maximum deviation, which is completely outside our desired target accuracy for chemical predictions (less than 2.00 kcal mol−1). Therefore, we suggest B3PW91/6-31G** method as a reliable method of computing the BDE for removal of the nitrogen dioxide group in the nitroaromatic compounds.
In addition, the C−NO2 BDEs for 2,4,6-trinitrotoluene (TNT), triaminotrinitrobenzene (TATB), diaminotrinitrobenzene (DATB), and picramide are studied
with B3PW91/6-31G** method. 相似文献
7.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。 相似文献
8.
High-level computations at G3, CBS-Q, and G3B3 levels were conducted, and good-quality C-H and N-H bond dissociation energies (BDEs) were obtained for a variety of saturated and unsaturated strained hydrocarbons and amines for the first time. From detailed NBO analyses, we found that the C-H BDEs of hydrocarbons are determined mainly by the hybridization of the parent compound, the hybridization of the radical, and the extent of spin delocalization of the radical. The ring strain has a significant effect on the C-H BDE because it forces the parent compound and radical to adopt certain undesirable hybridization. A structure-activity relationship equation (i.e., BDE (C-H) = 61.1-227.8 (p(parent)% - 0.75)(2) + 152.9 (p(radical)% - 1.00)(2) + 40.4 spin) was established, and it can predict the C-H BDEs of a variety of saturated and unsaturated strained hydrocarbons fairly well. For the C-H BDEs associated with the bridgehead carbons of the highly rigid strained compounds, we found that the strength of the C-H bond can also be predicted from the H-C-C bond angles of the bridgehead carbon. Finally, we found that N-H BDEs show less dependence on the ring strain than C-H BDEs. 相似文献
9.
Narges Zohari Mohammad Hossein Keshavarz Seyed Abolfazl Seyedsadjadi 《Journal of Thermal Analysis and Calorimetry》2014,117(1):423-432
A new relationship is introduced between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. In this relationship, the impact sensitivity of an energetic compound with general formula CaHbNcOd is a function of its activation energy of thermal decomposition as well as the ratio of \( \left( {\frac{{n_{\text{H}} }}{{n_{\text{O}} }}} \right) \) and the contribution of specific molecular structural parameters. The new correlation can help us to elucidate the mechanism of initiation of energetic materials by impact. It can be used to predict the magnitude of impact sensitivity of new energetic materials. The new correlation has the root mean square and the average deviations of 2.22 and 1.79 J, respectively, for 40 energetic compounds with different molecular structures. The proposed new method is also tested for 11 energetic compounds, which have complex molecular structures, e.g., 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane and 1,3,7,9-tetranitrophenoxazine. 相似文献
10.
Study of the reaction by very-low-pressure pyrolysis (VLPP) in the temperature range of 550–850°K yields for the high-pressure Arrhenius parameters where θ = 2.303RT in kcal/mole. These in turn yield for the high-pressure second-order recombination of tBu + NO, k?1 = (3.5 ± 1.7) × 109 1./mole·sec at 600°K. For the competing reaction l./mole·sec and E4 ≥ 4.2 kcal/mole. The bond dissociation energy DHo (tBu-NO) was determined to be (39.5 ± 1.5) kcal/mole, both from the equilibrium constant and from the activation energy of reaction (1), obtained from RRKM calculations. A ‘free-volume’ model for the transition state for dissociation is consistent with the data. A limited study of the system at 8–200 torr showed an extremely rapid inhibition by products and a very complex set of products. 相似文献
11.
Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms. A detailed evaluation of the carbon-hydrogen bond dissociation energies (C-H BDEs) is also performed for the parent ketones for the first time. Standard enthalpies of formation and bond energies are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, and G3MP2B3 levels of theory using isodesmic reactions to minimize calculation errors. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropies and heat capacities. The recommended ideal gas-phase ΔH°(f 298), from the average of the CBS-QB3 and G3MP2B3 levels of theory, as well as the calculated values for entropy and heat capacity are shown to compare well with the available experimental data for the parent ketones. Bond energies for primary, secondary, and tertiary radicals are determined; here, we find the C-H BDEs on carbons in the α position to the ketone group decrease significantly with increasing substitution on these α carbons. Group additivity and hydrogen-bond increment values for these ketone radicals are also determined. 相似文献
12.
Although organocopper and organosilver compounds are known to decompose by homolytic pathways among others, surprisingly little is known about their bond dissociation energies (BDEs). In order to address this deficiency, the performance of the DFT functionals BLYP, B3LYP, BP86, TPSSTPSS, BHandHLYP, M06L, M06, M06-2X, B97D, and PBEPBE, along with the double hybrids, mPW2-PLYP, B2-PLYP, and the ab initio methods, MP2 and CCSD(T), have been benchmarked against the thermochemistry for the M-C homolytic BDEs (D(0)) of Cu-CH(3) and Ag-CH(3), derived from guided ion beam experiments and CBS limit calculations (D(0)(Cu-CH(3)) = 223 kJ·mol(-1); D(0)(Ag-CH(3)) = 169 kJ·mol(-1)). Of the tested methods, in terms of chemical accuracy, error margin, and computational expense, M06 and BLYP were found to perform best for homolytic dissociation of methylcopper and methylsilver, compared with the CBS limit gold standard. Thus the M06 functional was used to evaluate the M-C homolytic bond dissociation energies of Cu-R and Ag-R, R = Et, Pr, iPr, tBu, allyl, CH(2)Ph, and Ph. It was found that D(0)(Ag-R) was always lower (~50 kJ·mol(-1)) than that of D(0)(Cu-R). The trends in BDE when changing the R ligand reflected the H-R bond energy trends for the alkyl ligands, while for R = allyl, CH(2)Ph, and Ph, some differences in bond energy trends arose. These trends in homolytic bond dissociation energy help rationalize the previously reported (Rijs, N. J.; O'Hair, R. A. J. Organometallics2010, 29, 2282-2291) fragmentation pathways of the organometallate anions, [CH(3)MR](-). 相似文献
13.
Both C-H bond dissociation energies for cyclobutene were measured in the gas phase (BDE = 91.2 +/- 2.3 (allyl) and 112.5 +/- 2.5 (vinyl) kcal mol-1) via a thermodynamic cycle by carrying out proton affinity and electron-binding energy measurements on 1- and 3-cyclobutenyl anions. The results were compared to those for an acyclic model compound, cis-2-butene, and provide the needed information to experimentally establish the heat of formation of cyclobutadiene. Chemically accurate G3 and W1 calculations also were carried out on cycloalkanes, cycloalkenes, and selected reference compounds. It appears that commonly cited bond energies for cyclopropane, cyclobutane, and cyclohexane are 3 to 4 kcal mol-1 too small and their pi bond strengths, as given by BDE1 - BDE2, are in error by up to 8 kcal mol-1. 相似文献
14.
Grant DJ Matus MH Switzer JR Dixon DA Francisco JS Christe KO 《The journal of physical chemistry. A》2008,112(14):3145-3156
Heats of formation at 0 and 298 K are predicted for PF3, PF5, PF3O, SF2, SF4, SF6, SF2O, SF2O2, and SF4O as well as a number of radicals derived from these stable compounds on the basis of coupled cluster theory [CCSD(T)] calculations extrapolated to the complete basis set limit. In order to achieve near chemical accuracy (+/-1 kcal/mol), additional corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and vibrational zero-point energies. The calculated values substantially reduce the error limits for these species. A detailed comparison of adiabatic and diabatic bond dissociation energies (BDEs) is made and used to explain trends in the BDEs. Because the adiabatic BDEs of polyatomic molecules represent not only the energy required for breaking a specific bond but also contain any reorganization energies of the bonds in the resulting products, these BDEs can be quite different for each step in the stepwise loss of ligands in binary compounds. For example, the adiabatic BDE for the removal of one fluorine ligand from the very stable closed-shell SF6 molecule to give the unstable SF5 radical is 2.8 times the BDE needed for the removal of one fluorine ligand from the unstable SF5 radical to give the stable closed-shell SF4 molecule. Similarly, the BDE for the removal of one fluorine ligand from the stable closed-shell PF3O molecule to give the unstable PF2O radical is higher than the BDE needed to remove the oxygen atom to give the stable closed-shell PF3 molecule. The same principles govern the BDEs of the phosphorus fluorides and the sulfur oxofluorides. In polyatomic molecules, care must be exercised not to equate BDEs with the bond strengths of given bonds. The measurement of the bond strength or stiffness of a given bond represented by its force constant involves only a small displacement of the atoms near equilibrium and, therefore, does not involve any reorganization energies, i.e., it may be more appropriate to correlate with the diabatic product states. 相似文献
15.
Hong Zhang Xin‐Lu Cheng Simone Chiesa 《International journal of quantum chemistry》2011,111(15):4452-4456
Bond dissociation energies (BDEs) for some nitro or amino contained prototypical molecules in energetic materials are computed by fixed‐node diffusion quantum Monte Carlo method. The nodes are determined from a Slater determinant calculated within density functional theory at the B3LYP/6‐311G** level. The possible errors, the nodal error, and the cancellation of nodal errors in calculating BDE are discussed, and the accuracy is compared with other available ab initio computations and experimental results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 相似文献
16.
Alnajjar MS Zhang XM Gleicher GJ Truksa SV Franz JA 《The Journal of organic chemistry》2002,67(25):9016-9022
The equilibrium acidities (pK(AH)s) and the oxidation potentials of the congugate anions [E(ox)(A(-))s] were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH(3) and 20 of the structure RCOCH(2)G, (where R = alkyl, phenyl and G = alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C-H bonds of the ketones were estimated using the equation BDE(AH) = 1.37pK(AH) + 23.1E(ox)(A(-)) + 73.3. While the equilibrium acidities of GCOCH(3) were found to be dependent on the remote substituent G, the BDE values for the C-H bonds remained essentially invariant (93.5 +/- 0.5 kcal/mol). A linear correlation between pK(AH) values and [E(ox)(A(-))s] was found for the ketones. For RCOCH(2)G ketones, both pK(AH) and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDEs. The BDE of alpha-9-anthracenylacetophenone is higher than that of alpha-2-anthracenylacetophenone by 3 kcal/mol, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7-84.4 kcal/mol is observed for RCOCH(2)G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of alpha-arylacetophenones. 相似文献
17.
共价化合物的某些化学性质的键能表征 总被引:2,自引:0,他引:2
在对一些共价化合物分子的键能进行IEHM量子化学计算的基础上,对共价物质的稳定性,酸性,化学反应速度,取代定位规律及超共轭效应等化学性质与键能的关系进行了探讨。 相似文献
18.
《Chemical physics letters》1985,122(6):572-576
The procedure employing bond functions recently suggested by Wright and Buenker has been applied to the N2 X 1Σg+ potential curve within the CAS SCF+MRSD Ci treatment of electron correlation. The basis set used herein is identical to that employed by these authors in their SCF+CI calculations. The De and the shape of the resulting potential curve, as judged by the computed vibrational levels, is not so accurate as would be expected from the results reported by Wright and Buenker. Our results indicate that using the CI superposition errors associated with bond functions to cancel basis set incompleteness depends on the treatment of the electron correlation. 相似文献
19.
20.
John Hanna El‐Nakat Noha Ghanem Paolo Yammine Gary Willett Keith Fisher 《International journal of quantum chemistry》2007,107(6):1367-1372
Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR/MS) offers the opportunity for gas phase cluster formation reactions at very low pressures and at temperatures that are different from room temperature. Reactions take place with single positive‐charge metal ions that are normally +2, +3, +4, etc., charged in solution. The ions formed are detected by measuring the current induced by their cyclotron rotation, but they cannot be physically separated and collected. Collision‐induced dissociation (CID) is widely used for ion‐structure determination via the fragmentation of the excited ions. CID study aims to determine the relationship between the Vpp [peak‐to‐peak voltage of the radiofrequency (rf) pulse] and the mass‐to‐charge (m/z) ratio, which will be used for the calculation of the center‐of‐mass translational kinetic energy (Ekcm) of the excited ion under investigation. CID studies are restricted to stable ions with relatively high abundance. Nevertheless, with the evolution of computational chemistry, such problems can be overcome whereby CID calculations will be used to provide the substantial parameters for computer software, such as the Gaussian 03 program, for the structure determination of the less stable NixS anions. The latter constitutes the core for our current research. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献