首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.

Background

The zebrafish visual system is a good research model because the zebrafish retina is very similar to that of humans in terms of the morphologies and functions. Studies of the retina have been facilitated by improvements in imaging techniques. In vitro techniques such as immunohistochemistry and in vivo imaging using transgenic zebrafish have been proven useful for visualizing specific subtypes of retinal cells. In contrast, in vivo imaging using organic fluorescent molecules such as fluorescent sphingolipids allows non-invasive staining and visualization of retinal cells en masse. However, these fluorescent molecules also localize to the interstitial fluid and stain whole larvae.

Results

We screened fluorescent coumarin derivatives that might preferentially stain neuronal cells including retinal cells. We identified four coumarin derivatives that could be used for in vivo imaging of zebrafish retinal cells. The retinas of living zebrafish could be stained by simply immersing larvae in water containing 1 μg/ml of a coumarin derivative for 30 min. By using confocal laser scanning microscopy, the lamination of the zebrafish retina was clearly visualized. Using these coumarin derivatives, we were able to assess the development of the zebrafish retina and the morphological abnormalities induced by genetic or chemical interventions. The coumarin derivatives were also suitable for counter-staining of transgenic zebrafish expressing fluorescent proteins in specific subtypes of retinal cells.

Conclusions

The coumarin derivatives identified in this study can stain zebrafish retinal cells in a relatively short time and at low concentrations, making them suitable for in vivo imaging of the zebrafish retina. Therefore, they will be useful tools in genetic and chemical screenings using zebrafish to identify genes and chemicals that may have crucial functions in the retina.  相似文献   

2.

Background  

Predictions from conduction velocity data for primate retinal ganglion cell axons indicate that the conduction time to the lateral geniculate nucleus for stimulation of peripheral retina should be no longer than for stimulation of central retina. On this basis, the latency of saccadic eye movements should not increase for more peripherally located targets. However, previous studies have reported relatively very large increases, which has the implication of a very considerable increase in central processing time for the saccade-generating system.  相似文献   

3.

Background  

The zebrafish has been suggested as a model system for studying human diseases that affect nervous system function and motor output. However, few of the ion channels that control neuronal activity in zebrafish have been characterized. Here, we have identified zebrafish orthologs of voltage-dependent Kv3 (KCNC) K+ channels. Kv3 channels have specialized gating properties that facilitate high-frequency, repetitive firing in fast-spiking neurons. Mutations in human Kv3.3 cause spinocerebellar ataxia type 13 (SCA13), an autosomal dominant genetic disease that exists in distinct neurodevelopmental and neurodegenerative forms. To assess the potential usefulness of the zebrafish as a model system for SCA13, we have characterized the functional properties of zebrafish Kv3.3 channels with and without mutations analogous to those that cause SCA13.  相似文献   

4.

Background  

Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF) gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood.  相似文献   

5.

Background  

The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc) mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression.  相似文献   

6.

Background

In humans, rapid eye movements (REM) density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies.

Methods

We obtained standardized electroencephalographic (EEG), electromyographic (EMG) and electrooculographic (EOG) signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA) to detect REM as singularities of the EOG signal, based on wavelet methodology.

Results

The distribution of wakefulness, non-REM (NREM) sleep and rapid eye movement (REM) sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep.

Conclusions

Sleep-stage specific distributions of REM in mice correspond to human REM density during sleep. REM density, now also assessable in animal models through our approach, is increased in humans after acute stress, during PTSD and in depression. This relationship can now be exploited to match animal models more closely to clinical situations, especially in animal models of depression.  相似文献   

7.
8.

Background  

The semicircular canals, a subdivision of the vestibular system of the vertebrate inner ear, function as sensors of angular acceleration. Little is currently known, however, regarding the underlying molecular mechanisms that govern the development of this intricate structure. Zebrafish represent a particularly tractable model system for the study of inner ear development. This is because the ear can be easily visualized during early embryogenesis, and both forward and reverse genetic techniques are available that can be applied to the discovery of novel genes that contribute to proper ear development. We have previously shown that in zebrafish, the calcium sensing molecule neuronal calcium sensor-1 (NCS-1) is required for semicircular canal formation. The function of NCS-1 in regulating semicircular canal formation has not yet been elucidated.  相似文献   

9.

Background  

Brain-derived neurotrophic factor (BDNF), which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP)-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP) was compared with that of nerve growth factor (NGF) tagged with yellow fluorescent protein (YFP), to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin.  相似文献   

10.
IntroductionIn-scanner head motion is a common cause of reduced image quality in neuroimaging, and causes systematic brain-wide changes in cortical thickness and volumetric estimates derived from structural MRI scans. There are few widely available methods for measuring head motion during structural MRI. Here, we train a deep learning predictive model to estimate changes in head pose using video obtained from an in-scanner eye tracker during an EPI-BOLD acquisition with participants undertaking deliberate in-scanner head movements. The predictive model was used to estimate head pose changes during structural MRI scans, and correlated with cortical thickness and subcortical volume estimates.Methods21 healthy controls (age 32 ± 13 years, 11 female) were studied. Participants carried out a series of stereotyped prompted in-scanner head motions during acquisition of an EPI-BOLD sequence with simultaneous recording of eye tracker video. Motion-affected and motion-free whole brain T1-weighted MRI were also obtained. Image coregistration was used to estimate changes in head pose over the duration of the EPI-BOLD scan, and used to train a predictive model to estimate head pose changes from the video data. Model performance was quantified by assessing the coefficient of determination (R2). We evaluated the utility of our technique by assessing the relationship between video-based head pose changes during structural MRI and (i) vertex-wise cortical thickness and (ii) subcortical volume estimates.ResultsVideo-based head pose estimates were significantly correlated with ground truth head pose changes estimated from EPI-BOLD imaging in a hold-out dataset. We observed a general brain-wide overall reduction in cortical thickness with increased head motion, with some isolated regions showing increased cortical thickness estimates with increased motion. Subcortical volumes were generally reduced in motion affected scans.ConclusionsWe trained a predictive model to estimate changes in head pose during structural MRI scans using in-scanner eye tracker video. The method is independent of individual image acquisition parameters and does not require markers to be to be fixed to the patient, suggesting it may be well suited to clinical imaging and research environments. Head pose changes estimated using our approach can be used as covariates for morphometric image analyses to improve the neurobiological validity of structural imaging studies of brain development and disease.  相似文献   

11.
12.

Background  

In bluegill sunfish, the melanin-containing pigment granules of the retinal pigment epithelium undergo cyclic movements in response both to ambient lighting and circadian cues. Pigment granules aggregate into the cell body at night (in the dark), and disperse into apical processes during the day (in the light). Regulation of pigment granule aggregation in a number of fishes depends on modulating the intracellular levels of cyclic adenosine monophosphate.  相似文献   

13.

Background  

Production of a variety of finger-key touches in the piano is essential for expressive musical performance. However, it remains unknown how expert pianists control multi-joint finger and arm movements for manipulating the touch. The present study investigated differences in kinematics and kinetics of the upper-limb movements while expert pianists were depressing a key with two different touches: pressed and struck. The former starts key-depression with the finger-tip contacting the key, whereas the latter involves preparatory arm-lift before striking the key. To determine the effect of individual muscular torque (MUS) as well as non-muscular torques on joint acceleration, we performed a series of inverse and forward dynamics computations.  相似文献   

14.

Background  

Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS) system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey) were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA) unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey).  相似文献   

15.

Background  

To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered) coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1) in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP) recordings to study the effect of eye position on V1 activity in humans.  相似文献   

16.

Background  

Following practice of skilled movements, changes continue to take place in the brain that both strengthen and modify memory for motor learning. These changes represent motor memory consolidation a process whereby new memories are transformed from a fragile to a more permanent, robust and stable state. In the present study, the neural correlates of motor memory consolidation were probed using repetitive transcranial magnetic stimulation (rTMS) to the dorsal premotor cortex (PMd). Participants engaged in four days of continuous tracking practice that immediately followed either excitatory 5 HZ, inhibitory 1 HZ or control, sham rTMS. A delayed retention test assessed motor learning of repeated and random sequences of continuous movement; no rTMS was applied at retention.  相似文献   

17.

Abstract  

Mechanics of sediment transport, maximum scour depth, and scoured volume upstream of a circular orifice was explored under constant head condition. A high-speed camera was used to investigate the sediment transport mechanism. It was found that sediment transport had two distinct phases. In the first phase, the sediment transport was due to excess bed shear stress and occurred within an area that was elliptical in shape, and the mobilized sediment was transported out of the orifice. In the second stage, vortices appear in the area that was scoured during the first phase. The sediment particles were lifted up into the main flow by these vortices, which were then transported out of the orifice by the main flow. The scour depth and scoured volume were found to be dependent on sediment size and head over the orifice.  相似文献   

18.

Background  

Somatosensation of the mammalian head is mainly mediated by the trigeminal nerve that provides innervation of diverse tissues like the face skin, the conjunctiva of the eyes, blood vessels and the mucouse membranes of the oral and nasal cavities. Trigeminal perception encompasses thermosensation, touch, and pain. Trigeminal chemosensation from the nasal epithelia mainly evokes stinging, burning, or pungent sensations. In vitro characterization of trigeminal primary sensory neurons derives largely from analysis of complete neuronal populations prepared from sensory ganglia. Thus, functional properties of primary trigeminal afferents depending on the area of innervation remain largely unclear.  相似文献   

19.

Purpose

To evaluate MRI artifacts at 3-Tesla for 38 commonly used cosmetics.

Materials and Methods

Thirty-eight cosmetics (16, nail polishes; 5, eyeliners; 3, mascaras; 10, eye shadows; 1, lip gloss; 1, body lotion; 1, body glitter, and 1, hair loss concealer) underwent evaluation for MRI artifacts at 3-Tesla. The cosmetics were applied a copper-sulfate-filled, phantom and initially assessed using a “screening” gradient echo (GRE) pulse sequence. Of the 38 different cosmetics, 14 (37%) exhibited artifacts. For these 14 cosmetics, additional characterization of artifacts was performed using a GRE pulse sequence. A qualitative scale was applied to characterize the artifact size.

Results

Artifacts were observed, as follows: 2, nail polishes; 5, eyeliners; 3, mascaras; 3, eye shadows; 1, hair loss concealer. Artifact size ranged from small (eye shadow) to very large (hair loss concealer) and tended to be associated with the presence of iron oxide or other metal-based ingredient.

Conclusions

Commonly used cosmetics caused artifacts that may create issues if the area of interest is the same as where the cosmetic was applied or if its presence was unknown, thus, potentially causing it to be construed as pathology. Therefore, these findings have important implications for patients referred for MRI examinations.  相似文献   

20.

Background

Behavior results from the integration of ongoing sensory signals and contextual information in various forms, such as past experience, expectations, current goals, etc. Thus, the response to a specific stimulus, say the ringing of a doorbell, varies depending on whether you are at home or in someone else's house. What is the neural basis of this flexibility? What mechanism is capable of selecting, in a context-dependent way an adequate response to a given stimulus? One possibility is based on a nonlinear neural representation in which context information regulates the gain of stimulus-evoked responses. Here I explore the properties of this mechanism.

Results

By means of three hypothetical visuomotor tasks, I study a class of neural network models in which any one of several possible stimulus-response maps or rules can be selected according to context. The underlying mechanism based on gain modulation has three key features: (1) modulating the sensory responses is equivalent to switching on or off different subpopulations of neurons, (2) context does not need to be represented continuously, although this is advantageous for generalization, and (3) context-dependent selection is independent of the discriminability of the stimuli. In all cases, the contextual cues can quickly turn on or off a sensory-motor map, effectively changing the functional connectivity between inputs and outputs in the networks.

Conclusions

The modulation of sensory-triggered activity by proprioceptive signals such as eye or head position is regarded as a general mechanism for performing coordinate transformations in vision. The present results generalize this mechanism to situations where the modulatory quantity and the input-output relationships that it selects are arbitrary. The model predicts that sensory responses that are nonlinearly modulated by arbitrary context signals should be found in behavioral situations that involve choosing or switching between multiple sensory-motor maps. Because any relevant circumstancial information can be part of the context, this mechanism may partly explain the complex and rich behavioral repertoire of higher organisms.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号