首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work presents a quantum key agreement (QKA) based on the BB84 protocol. The newly proposed QKA protocol enables two involved parties to jointly establish a shared secret key in such a way that the shared secret key cannot be fully determined by one party alone. In contrast to the traditional key agreement protocols that must be based on some mathematical difficulties, the security of the newly proposed protocol is based on the quantum phenomena, which allows unconditional security as well as detection of eavesdroppers. With the technique of delayed measurement, the proposed protocol has 50% qubit efficiency. Therefore, it is very efficient and feasible for practical applications.  相似文献   

2.
Simple proof of security of the BB84 quantum key distribution protocol   总被引:5,自引:0,他引:5  
We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.  相似文献   

3.
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability (p dark ~ 10?7).  相似文献   

4.
提出一种新的不间断的主动相位补偿方案,在进行量子密钥分发的同时统计不匹配基量子比特在干涉仪不同输出端口上的随机计数分布,给出了由不匹配基量子比特统计数值计算相位漂移参数的计算公式,并由统计数值计算得到相位漂移参数.结果表明:该方案允许系统并行处理量子密钥分发与相位补偿,也充分利用了在原BB84协议中会被丢弃的不匹配基量...  相似文献   

5.
We review two security proofs for the BB84 quantum key distribution protocol: Mayers's security proof and the more recent proof of Shor and Preskill. We focus on the basic principles and the intuition in Mayers's proof instead of technical details. We present a variation on Shor's and Preskill's proof which is convenient for purpose of comparison. We explain the connection between these two proofs. Received 14 July 2001  相似文献   

6.
We report on the implementation of a Bennett-Brassard 1984 quantum key distribution protocol over a free-space optical path on an optical table. Attenuated laser pulses and Pockels cells driven by a pseudorandom number generator are employed to prepare polarization-encoded photons. The sifted key generation rate of 23.6 kbits per second and the quantum bit error rate (QBER) of 3% have been demonstrated at the average photon number per pulse μ = 0.16. This QBER is sufficiently low to extract final secret keys from shared sifted keys via error correction and privacy amplification. We also tested the long-distance capability of our system by adding optical losses to the quantum channel and found that the QBER remains the same regardless of the loss.  相似文献   

7.
In the original BB84 quantum key distribution protocol, the states are prepared and measured randomly, which lose the unmatched detection results. To improve the sifting efficiency, biased bases selection BB84 protocol is proposed. Meanwhile, a practical quantum key distribution protocol can only transmit a finite number of signals, resulting in keys of finite length. The previous techniques for finite-key analysis focus mainly on the statistical fluctuations of the error rates and yields of the qubits. However, the prior choice probabilities of the two bases also have fluctuations by taking into account the finite-size effect. In this paper, we discuss the security of biased decoy state BB84 protocol with finite resources by considering all of the statistical fluctuations. The results can be directly used in the experimental realizations.  相似文献   

8.
基于BB84量子保密通信协议,利用光子的偏振态传输信息.发送方和接收方通过量子信道来传输量子态,同时双方通过一条经典信道进行基矢比对和其他信息交互,进而两边同时安全地获得和共享一份相同的密钥.  相似文献   

9.
Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their implementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312 (2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)]. A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community and among the general public by misinterpreting the implications of this work. The present article proves the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys. Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably superior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev. A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383 (1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was not previously known).  相似文献   

10.
A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.  相似文献   

11.
A generalized version for a qubit based two-way quantum key distribution scheme was first proposed in the paper [Phys. Lett. A 358 (2006) 85] capitalizing on the six quantum states derived from three mutually unbiased bases. While boasting of a higher level of security, the protocol was not designed for ease of practical implementation. In this work, we propose modifications to the protocol, resulting not only in improved security but also in a more efficient and practical setup. We provide comparisons for calculated secure key rates for the protocols in noisy and lossy channels.  相似文献   

12.
A frequency-coded quantum key distribution scheme, what we propose here, is that using encoded qubit in different frequency of a photon in four kinds of states. These states satisfy requirements of BB84 protocol and could be produced with the recent advances in technology. Comparing with the scheme proposed in [Bloch et al., Opt. Lett. 32 (2007) 301], our scheme has no intrinsic deficiency that the measurement of one kind of the states will get wrong result with a little probability, and is a perfect BB84 protocol. The characters and feasibility of the scheme are discussed in detail.  相似文献   

13.
In a fiber-based continuous-variable quantum key distribution (CVQKD) system, to perform the channel estimation, the channel transmittance is usually assumed to be a constant. Subsequently, when the channel parameters are intentionally manipulated, the employed parameter estimation method will lead to deviations of channel parameters and ultimately impacting the evaluation of the secret key rate. In this paper, we propose a denial-of-service attack strategy based on Eve's manipulation of the channel parameters. In particular, we analyze in detail the impact of this attack when the channel transmittance is attacked and obeys two-point distribution and uniform distribution. The result shows that in both cases, Eve's slight manipulation on the quantum channel will lead to large underestimation of the secure transmission distance by using the previous parameter estimation, which will lead to intentional terminations of the communication. To prevent this attack, a simple data post-selection should be added before parameter estimation.  相似文献   

14.
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.  相似文献   

15.
Kak’s quantum key distribution (QKD) protocol provides not only the distribution but also the integrity of secret key simultaneously in quantum channel. Consequently the additional exchange of information, used to check whether an eavesdropper exists, is unnecessary. In this comment, we will point out the failure of Kak’s protocol and show that Kak’s protocol does not have the joint distribution and integration that the author declares in [1].  相似文献   

16.
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.  相似文献   

17.
We propose a prepare-and-measure scheme for quantum key distribution with two-qubit quantum codes. The protocol is unconditionally secure under all types of intercept-and-resend attack. Given the symmetric and independent errors to the transmitted qubits, our scheme can tolerate a bit of an error rate up to 26% in four-state protocol and 30% in six-state protocol, respectively. These values are higher than all currently known threshold values for the prepare-and-measure protocols. Moreover, we give a practically implementable linear optics realization for our scheme.  相似文献   

18.
Reference-frame-independent quantum key distribution (RFI-QKD) has been demonstrated to be reliable and useful both in theories and experiments, which is intrinsically robust against slowly varying reference frames. In this paper, we propose an efficient scheme of passive decoy-state RFI-QKD based on the parametric down-conversion source, where a beam splitter splits the idler pulses into four local detection events to improve the performance of RFI-QKD systems. In addition, we demonstrate the worst relative rotation of reference frames in our scheme. Simulation results show that our scheme can achieve good performance even at the worst-case scenario.  相似文献   

19.
The security of the quantum secret key plays a critical role in quantum communications.Thus far,one problem that still exists in existing protocols is the leakage of the length of the secret key.In this letter,based on variable quantum encoding algorithms,we propose a secure quantum key distribution scheme,which can overcome the security problem involving the leakage of the secret key.Security analysis shows that the proposed scheme is both secure and effective.  相似文献   

20.
A new quantum key distribution protocol stable at arbitrary losses in a quantum communication channel has been proposed. For the stability of the protocol, it is of fundamental importance that changes in states associated with losses in the communication channel (in the absence of the eavesdropper) are included in measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号