首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the Co thin films on Pd(1 1 1) and the effect of the CO adsorption on Co thin films were studied by Co K-edge surface X-ray absorption fine structure (XAFS). The polarization dependences of the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra indicate that Co thin films grow in the fcc stacking mode on Pd(1 1 1) up to 12 ML. The analysis of the nearest neighbor shell shows little mechanical strain at the interface, indicating that Co atom does not grow pseudomorphically on Pd(1 1 1). There is no alloy-like structure at the interface. CO adsorption causes no structural change of the Co thin films but modifies the Co surface electronic state. These structural studies provide deep insight in the magnetic property of the Co thin films on Pd(1 1 1).  相似文献   

2.
We have evaporated Ni on the pentagonal surface of an icosahedral Al-Pd-Mn quasicrystal kept at room temperature. At the initial stage of growth, Ni intermixes with the substrate surface. Subsequently, Al from the quasicrystal matrix migrates to growing layers. The modified chemical composition in an initially icosahedral region near the surface induces a structural transformation. An Al-Pd-Mn alloy is formed which consists of five cubic domains with dimensions in the nm-range exposing their (1 1 0) faces parallel to the surface. These domains are azimuthally rotated by 2π/5 with respect to each other and aligned with symmetry directions of the icosahedral substrate. Al-Mn-Ni, Al-Ni, and Ni overlayers adopt both structure and orientation of these domains which stabilises Ni in a novel body-centred cubic phase. Ni-rich overlayers exhibit out-of-plane magnetic ordering.  相似文献   

3.
By means of congruent evaporation, we have deposited CdTe and PbTe onto the oxidized fivefold-symmetry surface of an icosahedral AlPdMn quasicrystal. This procedure results in the formation of nanocrystals in both cases. While the azimuthal orientations of the crystallites are random, the polar orientations are well defined. The crystalline CdTe and PbTe domains expose their (1 1 1) and (0 0 1) faces, respectively, which are aligned parallel to the pentagonal surface of the quasicrystal. The nanometric size of the domains is not a result of the lattice mismatch between the growing film and the substrate as usually observed in molecular-beam epitaxy, but of the limited size of the oxide domains of the substrate surface.  相似文献   

4.
Effect of oxygen exposure on the magnetic properties of ultrathin Co/Si(1 1 1)-7×7 films have been studied. In ultrahigh vacuum environment, Auger electron spectroscopy (AES) analysis shows that no oxygen adsorption occurs on Si(1 1 1)-7×7 surface and Co-Si compound interfaces. As the thickness of Co films increases above 5 monolayers (ML), pure cobalt islands form on the surface and the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. From the results of slight chemical shift and depth profiling measurements, the oxygen is weakly adsorbed on the topmost layer of 15 ML Co/Si(1 1 1) films. The adsorbed oxygen influences the electronic density of states of Co and leads to the changes of the magnetic properties. The appearance of the O/Co interface could modify the stress anisotropy, as a result, the coercivity of ultrathin Co/Si(1 1 1) films are enhanced. As an example for 15 ML Co/Si(1 1 1), the coercivity increases from 140 to 360 Oe with 5000 Langmuir of oxygen exposure.  相似文献   

5.
The interaction of oxygen with the 10-fold-symmetry surface of the decagonal Al72.9Co16.7Ni10.4 quasicrystal at high temperatures was investigated by low-energy-electron diffraction and Auger electron spectroscopy. The results are consistent with a well-ordered aluminum-oxide layer possessing a hexagonal antiphase domain structure with a limited lateral size of about 35 Å. We claim that the separation distances of the domain boundaries, separating domains of equal orientation, are primarily a consequence of the preferential cluster nucleation on decagonal Al-Co-Ni. The domains are azimuthally oriented along one direction of the two sets of five twofold-symmetry axes lying on the decagonal surface in accordance with the local symmetry of the quasicrystal surface, while the size of the domains can be explained in terms of self-size-selecting arguments.  相似文献   

6.
Magnetization reversal processes and domain structures have been studied in Mo(1 1 0)/Co(0 0 0 1)/Au(1 1 1) structures grown by molecular beam epitaxy on monocrystalline (11–20) sapphire substrates. Wedge-shaped samples with different Co thickness gradients relative to the Mo [0 0 1] direction were fabricated. Observation of the domain structure was performed at room temperature using Kerr microscopy in a Co thickness range varying from 5 to 50 nm, where the magnetization is oriented in the plane of the sample. A Co thickness-dependent coercivity field was determined through analysis of the domain wall position during the reversal process. A preferential orientation of magnetic domain walls was found, with the domains being needle-like. The orientation, as well as the size of the needles, depends on the Co thickness and the orientation of the magnetic field applied in the sample plane.  相似文献   

7.
Jisang Hong 《Surface science》2006,600(11):2323-2328
Based on the full-potential linearized augmented plane wave (FLAPW) calculations, various magnetic properties of ultra thin face centered cubic (fcc) Co(0 0 1) film and V adsorbed systems on Co(0 0 1) surface are explored. It was found that the V film grown on fcc Co(0 0 1) surface has large induced magnetic moment and the direction of magnetization is antiparallel to that of Co atom in the submonolayer coverage. Very interestingly, we found that the surface alloy and 0.5 ML adsorbed V/Co(0 0 1) systems have perpendicular magnetocrystalline anisotropy and the magnitude of anisotropy energy in 0.5 ML V on fcc Co(0 0 1) surface is greatly larger than that of surface alloy, while we observed in-plane magnetization in pure fcc Co(0 0 1) film. It was found that the spin-orbit interaction through spin-flip process cannot be ignored, therefore the simple relation with orbital anisotropy is not applicable in the interpretation of magnetocrystalline anisotropy.  相似文献   

8.
We report on scanning tunneling microscopy (STM) studies of submonolayer growth of cobalt on the close-packed (1 1 1) surfaces of Au and Ag. Both substrates belong to the category of noble metals, and they both exhibit a lattice misfit of ∼13% with respect to the (0 0 0 1) plane of Co. However, whereas the Au(1 1 1) surface reconstructs into the rather complex herringbone structure that disperses the cobalt into nanoclusters, the Ag(1 1 1) surface does not reconstruct in its clean state, and the surface dispersion of Co on this surface is therefore different. For Ag(1 1 1) at temperatures ranging from 160 to 200 K and for Au(1 1 1) at room temperature, the Co growth is three-dimensional starting with double layer islands followed by additional single layers. For both the Co/Au(1 1 1) and the Co/Ag(1 1 1) system, a Moiré pattern develops in the first bilayer of the Co islands, indicating an epitaxial but not commensurate growth. For Co islands with more than two layers, the subsequent layers are commensurate with the lower Co layers in the islands, but exhibit a decreasing corrugation of the Moiré pattern as observed in STM images. Despite a difference in the Moiré lattice constant and rotational angle, we show that the cobalt lattice constant is the same on both surfaces. We furthermore relate defect nucleation on the herringbone reconstruction on Au(1 1 1) to defect nucleation on steps on Ag(1 1 1).  相似文献   

9.
The AES, EELS, AFM and resistance measurement investigations have been performed to determine the growth mechanism, electronic structure and resistance-thickness dependence of Co layers on silicon at the thickness range from submonolayer up to several monolayer coverage. These layers were obtained under UHV high-rate deposition with using re-evaporation of Co from a Ta foil. The layer-by-layer growth of Co on Si(1 1 1) with some light segregation of Si has been found on the AES data. An enlarged and reduced concentration of valence electrons in the interface Si layer at the thickness ranges 0-1 Å and in the Co film at d = 1-2 Å has been observed. Resistance measurement of the Co film showed a fast decrease of the resistance down to some value limited by quantum-size effect in accordance with the formation of a two-dimensional Co phase at d = 1-2 Å.  相似文献   

10.
The crystalline structure of Co layers deposited on the Cu(0 0 1) surface was investigated with the use of the directional elastic peak electron spectroscopy (DEPES). For clean Cu(0 0 1) the experimental DEPES profiles obtained for different energies of the primary electron beam exhibit intensity maxima corresponding to the close packed rows of atoms. The Auger peak kinetics recorded during continuous Co deposition suggest the layer-by-layer growth mode. The DEPES profiles recorded for 10 monolayers (ML) of Co on Cu(0 0 1) reflect a short-range order in the adsorbate. Intensity maxima observed in the DEPES profiles for Co along [1 0 0], [0 1 0], and [1 1 0] azimuths of Cu(0 0 1) are characteristic of the face centered cubic (fcc) Co(0 0 1) layers. Low-intensity reflections and considerable background intensities were found in the low energy electron diffraction (LEED) patterns recorded from 10 ML of Co, which indicates a weak long-range order in the adsorbate. The adsorption of about 20 ML of Co results in considerable background contribution to DEPES. No reflections but a large background were observed with the use of LEED for this layer. The heating of the Co/Cu(0 0 1) system at T = 770 K leads to an increase of the short- and long-range order in the overlayer, observed in the DEPES profiles and LEED patterns, respectively. The theoretical DEPES profiles were obtained with the use of a multiple scattering approximation. A very good agreement between experimental and theoretical scans was found for the clean and covered copper substrate. The latter proves the epitaxial growth of Co layers on Cu(0 0 1).  相似文献   

11.
Microstructure, static magnetic properties and microwave permeability of sputtered FeCo films were examined. Fe60Co40 films (100 nm in thickness) deposited on glass substrates exhibited in-plane isotropy and a large coercivity of 161.1 Oe. When same thickness films were deposited on 2.5 nm Co underlayer, well-defined in-plane anisotropy was formed with an anisotropy field of 65 Oe. The sample had a static initial permeability of about 285, maximum imaginary permeability of 1255 and ferromagnetic resonance frequency of 2.71 GHz. Cross-sectional TEM image revealed that the Co underlayer had induced a columnar grain structure with grain diameter of 10 nm in the FeCo films. In comparison, FeCo films without Co underlayer showed larger grains of 70 nm in diameter with fewer distinct vertical grain boundaries. In addition, the Co underlayer changed the preferred orientation of the FeCo from (1 0 0) to (1 1 0). The improvement in soft magnetic properties and microwave behavior originates from the modification of the film microstructure, which can be well understood by the random anisotropy theory.  相似文献   

12.
The electronic structure of 3d transition-metal atoms on face-centered cubic Co(0 0 1) substrate is determined within ab initio density functional calculations in the gradient corrected approach. Calculations are performed for ordered surface configuration with coverage equal to 0.25, 0.5, 0.75 and 1 ML. For Ni and Fe a ferromagnetic coupling with the Co atoms is always obtained independently of the concentration. Moreover the values of the magnetic moments remain similar. For Mn a ferromagnetic coupling is obtained for low-coverage whereas an in-plane antiferromagnetic coupling is found for a complete Mn overlayer on Co(0 0 1). Also, for Sc, Ti, V and Cr a drastic modification of the magnetic map is observed when we go from low-coverage to the monolayer. Cr (Mn) adatoms present antiferromagnetic (ferromagnetic) coupling with Co(0 0 1) for x = 0.25 whereas an in-plane antiferrimagnetic coupling is obtained for x = 1.00.  相似文献   

13.
M.S. Zei 《Surface science》2007,601(3):858-864
The structure of the nano-sized cobalt clusters on bare NiAl(1 0 0) and an oxidized NiAl(1 0 0) surfaces have been investigated by AES, LEED and RHEED. The deposition of Co onto bare NiAl(1 0 0) at room temperature led to small crystalline Co grains and surface asperities of substrate. The latter is likely induced by replacement of surface Al, Ni atoms by Co deposit. At 800 K Co particles aggregate to form clusters, but incorporation of Co into bulk NiAl(1 0 0) could occur upon annealing at 900 K. On the other hand, pure face-centered cubic (fcc) phase of Co crystallites of ≈1 nm in diameter with inclusion of smaller-sized particles (D < 1 nm) are observed on Θ-Al2O3 after Co deposition at room temperature. After annealing the Co nano-clusters grow larger at expense of small particles (D ≈ 3 nm), where the [1 1 0] and [−1 1 0] axis of the Co(0 0 1) facets are parallel to the [1 0 0] and [0 1 0] directions of (0 0 1)oxide, respectively. The in-plane lattice constant of Co clusters is ca. 4% larger than that of bulk Co, yielding less strain at the Co/oxide interface. A 15° ± 10% random orientation of the normal to (0 0 1) facet of Co clusters with respect to (0 0 1)oxide surface was deduced from the “arc”-shape reflection spots in RHEED. These results suggest that both orientation and phase of Co clusters are strongly affected by the nature and structure of oxide surface.  相似文献   

14.
We have investigated the structure and morphology of Co and Pd clusters grown at room temperature on an alumina film on NiAl(1 1 0) by scanning tunneling microscopy, low energy ion scattering and Auger electron spectroscopy. We have also studied the clusters after annealing to 300 °C and Pd clusters deposited at 300 °C. Mixed Co-Pd clusters obtained by sequential deposition at room temperature were also studied. Pure Co deposited at room temperature forms a single type of clusters, most or all of them with close-packed planes parallel to the oxide surface. Their shape can be approximated by truncated spheres with a high contact angle of 115-125°. These clusters are stable upon annealing up to 300 °C.Pd clusters deposited at room temperature grow in two different modes. At the reflection domain boundaries the clusters grow in their thermodynamically favorable shape. The clusters do not have a single crystallographic orientation and their shape can be approximated by a truncated sphere with a high contact angle of about 110°, especially at very low coverages (below 0.05 ML). At the antiphase domain boundaries, the Pd clusters grow in (1 1 1) orientation and on some of them small (1 1 1) facets appear at their tops already at low coverages. For higher coverages of Pd, the majority of Pd clusters are rather flat with a large Pd(1 1 1) facet on top. The clusters’ shape at the antiphase domain boundaries differs from the thermodynamically favorable one, due to kinetic limitations, especially at higher coverages. Annealing the Pd clusters to 300 °C leads to re-structuring of these Pd clusters. They transform into higher and more rounded clusters and a thin disordered alumina film is formed on top of the clusters. When Pd is deposited at 300 °C, about 16% of the Pd clusters have a steep slope and rounded tops. The rest of the Pd forms lower clusters, goes subsurface and is covered by a disordered alumina film. When Co and Pd are deposited sequentially, Pd covers the Co clusters forming a shell. The resulting mixed clusters are still truncated spheres with a lowered contact angle. For deposition in the reverse order (first Pd and then Co) we found that Co forms an alloy with Pd already at room temperature.  相似文献   

15.
G. Goryl  B. Such  M. Szymonski 《Surface science》2007,601(17):3605-3610
InSb(0 0 1) surface prepared by ion sputtering and thermal annealing has been studied in the temperature range from 77 K up to 300 K using scanning tunneling microscopy (STM). At 300 K the surface is c(8 × 2) reconstructed as indicated by low energy electron diffraction and STM images, and its structure appears to be consistent with the “ζ-model” recently proposed for this surface. Upon lowering of the temperature below 180 K a new phase appears on the surface. This phase is characterized by the surface structure period doubling along [1 1 0], lowering the surface symmetry from c2mm to p2, and appearance of structural domains. Possible origins of the new phase are discussed.  相似文献   

16.
Morphology and magnetic properties of Co/Si(1 1 1) interfaces have been investigated using scanning tunneling microscope and surface magneto-optic Kerr effect techniques. As deposited at room temperature for Co/Si(1 1 1), defects have been observed with shapes of dark patches and bright islands on the surface with different Co coverage. The defect formation causes a rough interface. For subsequently deposited Co layers, the interfacial state between Co and the Si substrate results in the appearance of both the longitudinal and polar Kerr loops. After annealing treatments, interdiffusion of Co atoms and Si(1 1 1) substrate occurs as revealed by Auger electron spectroscopy. Scanning tunneling microscope images show the formation of Si clusters with average diameter of 10 nm at high temperatures. The disappearance of ferromagnetism of the films occurs due to the structural and compositional changes.  相似文献   

17.
Cobalt doped zinc oxide (ZnO:Co) thin films were deposited on glass substrates by ultrasonic spray technique decomposition of Zinc acetate dihydrate and cobalt acetate tetrahydrate in an ethanol solution with film thickness. All films are polycrystalline with a hexagonal wurtzite-type structure with a preferential orientation according to the direction (0 0 2), with the maximum crystallite size was found of 59.42 nm at 569 nm. The average transmittance of all films is about 65–95% measured by UV–vis analyzer. The band gap energy increased from 3.08 to 3.32 eV with increasing the film thickness from 192 to 569 nm. The increase of the electrical conductivity with increases in the film thickness to maximum value of 9.27 (Ω cm)−1 can be explained by the increase in carrier concentration and displacement of the electrons of the films. The correlation between the band gap and crystal structure suggests that the band gap energy of Co doped ZnO is influenced by the crystallite size and the mean strain.  相似文献   

18.
Orientation control and the magnetic properties of single crystalline Co nanowires fabricated by electrodeposition have been systematically investigated. It is found that the orientation of Co nanowires can be effectively controlled by varying either the current density or the pore diameter of AAO templates. Lower current density or small diameter is favorable for forming the (1 0 0) texture, while higher current values or larger diameter leads to the emergence and enhancement of (1 1 0) texture of Co nanowires. The mechanism for the manipulated growth characterization is discussed in detail. The orientation of Co nanowires has a significant influence on the magnetic properties, resulting from the competition between the magneto-crystalline and shape anisotropy of Co nanowires. This work offers a simple method to manipulate the orientation and magnetic properties of nanowires for future applications.  相似文献   

19.
Inert gas ion impacts can be used to manipulate atomic assembly processes during the growth of metallic superlattices but the detailed mechanisms are not well understood. Molecular dynamics simulations are used to investigate the effects of ion incident angle and fluence upon the reassembly and structure of a copper surface partially covered with cobalt asperities. In the low ion energy regime, increasing the ion fluence decreases the cobalt layer surface roughness while gradually leading to an increase in the degree of interfacial mixing. The flattening of asperities occurs by direct (athermal) ion activation of an Ehrlich-Schwoebel mechanism of atom jumping. Intermixing of cobalt surface atoms in an underlying copper layer is found to occur by a knock-on process and the lowest energy barriers for this occur in low-index 〈1 1 0〉 and 〈1 1 2〉 crystal (channeling) directions. The mechanistic insights gained from the study are used to simulate the ion assisted growth of a Cu/Co/Cu multilayer system. Using ion parameters chosen to selectively activate atomic assembly mechanisms that promote flat, unmixed interfacial structures, it is shown that Cu/Co/Cu multilayer structures with high quality, smooth and chemically sharp interfaces can be obtained by using oblique, low energy, moderate fluence ion assistance with an ion mass that is similar to the atomic mass of the metals.  相似文献   

20.
We have investigated the surface magnetization anisotropy of 5 at% Co doped rutile TiO2 (1 1 0) using magnetization-induced optical second harmonic generation (MSHG) in the longitudinal Kerr configuration with an incident beam angle of 4°. The MSH intensity pattern from the Co:TiO2 without surface Co clusters showed two anisotropic lobes at the second harmonic photon energy of 2?ω=3.13 eV. Since MSH intensity is proportional to surface magnetization, the result indicates an anisotropy of the surface magnetization of Co:rutile TiO2 (1 1 0). This confirms the possibility that 5 at% Co:rutile TiO2 (1 1 0) is a ferromagnetic dilute magnetic semiconductor at its surface, as proposed in our previous paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号