首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work reports on the technical feasibility and establishment of a process window for removing chromium titanium aluminium nitride (CrTiAlN) coating from steel substrates by laser irradiation. CrTiAlN coating has high hardness and oxidation resistance, with applications for use with cutting tools. The motivation for removing such coatings is to facilitate re-use of tooling by enabling regrinding or reshaping of a worn tool and hence promote sustainable material usage. In this work, laser decoating was performed using an excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and laser beam overlap on the decoating performance was investigated in detail. The minimum threshold laser fluence for removing the CrTiAlN coating was lower than that of the steel substrate and this factor is beneficial in controlling the decoating process. Successful laser removal of CrTiAlN coating without noticeable damage to the steel substrate was demonstrated.  相似文献   

2.
We present a means of controlling the stoichiometry of titanium nitride (TiN) coatings on probes for tip‐enhanced Raman spectroscopy measurements made using sputtering so that outstanding enhancements can be obtained. This provides a more robust alternative to gold‐coated tips that also has potential for tuning the plasmon resonance and working in new environments. Proof of concept measurements on poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) thin films demonstrate increases in the observed intensity with contrast values up to 3.1. TiN is mechanically, chemically, and thermally robust. When deposited under appropriate conditions it has optical properties, including a plasmon resonance, very similar to those of gold. However, the spontaneous formation of a surface TiNxOy layer with relatively high values of y has prevented attaining enhancements in tip‐enhanced Raman spectroscopy beyond that provided by the lightning rod effect. Depositing a thin layer of aluminum to form a passivating Al2O3 layer over the TiN plasmonic structure allows the stoichiometry achieved in the vacuum deposition to be maintained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Titanium nitride, TiN, has attractive physical and chemical properties such as hardness, chemical stability and electrical conductivity. It is a typical material with a wide range of stoichiometry. It can be synthesised by high pressure combustion synthesis. The composition and microstructures can vary with the experimental conditions especially with thermal treatment and nitrogen pressure.  相似文献   

4.
利用脉冲高能量密度等离子体技术在室温条件下在45号钢基材上制备出了超硬耐磨TiN薄膜.利用XRD,XPS,AES,SEM等手段分析了薄膜的成分及显微组织结构,并测试了薄膜的硬度分布及摩擦磨损性能.结果表明:薄膜主要组成相为TiN,薄膜组织致密、均匀,与基材之间存在较宽的混合界面;薄膜硬度高,在干滑动磨损实验条件下具有优异的耐磨性及较低的摩擦系数. 关键词: 脉冲高能量密度等离子体 TiN膜 显微组织 耐磨性  相似文献   

5.
Tantalum nitride films were deposited on silicon wafer and steel substrates by cathodic vacuum arc in N2/Ar gas mixtures. The chemical composition, crystalline microstructure and morphology of the films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. According to the results, film composition and microstructure depends strongly on the N2 partial pressure and the applied negative bias (Vs).  相似文献   

6.
彭丽萍  夏正才  尹建武 《物理学报》2012,61(3):37103-037103
采用第一性原理的计算方法, 分别研究了金红石相和锐钛矿相TiO2各种缺陷态形成的类型, 以及几何结构、生长气氛和Fermi能级位置对缺陷形成能的影响, 从理论上预测产生点缺陷的实验条件. 重点是讨论带电点缺陷的形成能, 并对结果进行适当修正. 研究发现, 本征缺陷的类型和浓度对 TiO2的性能有一定的影响: 在富O条件下, TiO2容易形成VTi(Ti空位)缺陷; 在富Ti条件下, TiO2的Tii4+VO(O空位)缺陷将大量出现, 形成Schottky缺陷.  相似文献   

7.
Using photoluminescence and transmission measurements, we have studied the optical properties of indium nitride powder and thin films grown by molecular beam epitaxy. The bandgap for InN powder with electron concentration ∼ 4·1019 cm−3 was 0.94 eV, and for InN films with electron concentrations ∼1018 cm−3 it was 0.7 eV. We have established that when the electron concentration is increased to 8·1019 cm−3, the bandgap of InN increases to 1.0 eV. The change in the bandgap as a function of the concentration is due to the appearance of the Burstein-Moss effect. Report given at the Fifth Belorussian-Russian Seminar on Semiconductor Lasers and Systems Based on Semiconductor Lasers, June 1–5, 2005, Minsk, Belarus. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 1, pp. 86–89, January–February, 2006.  相似文献   

8.
In this work, we demonstrate a novel synthesis of synthetic rutile from high titanium slag. This rutile TiO2 was obtained by a simple one-step microwave roasting route. The influence of microwave roasting temperature and duration on the phase transformation of high titanium slag has been assessed. X-ray diffraction (XRD) results indicate that the intensity of anosovite (Fe3Ti3O10) phase, which were the major phase of high titanium slag of carbon thermal reduction of ilmenite ores, decreased rapidly while the peaks for rutile TiO2 phase increased with increase in the microwave roasting temperature. The scanning electron microscope (SEM) images revealed formation and the particle-size distribution of rutile TiO2 phase. Based on XRD and SEM analysis, confirmed the dependence of phase structure, composition and crystallite size on the process conditions of microwave roasting.  相似文献   

9.
Extensive density-functional calculations are performed to understand atomic chemisorption on the TiC(1 1 1) and TiN(1 1 1) surfaces, in particular the calculated pyramid-shaped trends in the adsorption energies for second- and third-period adatoms. Our previously proposed concerted-coupling model for chemisorption on TiC(1 1 1) is tested against new results for adsorption on TiN(1 1 1) and found to apply on this surface as well, thus reflecting both similarities and differences in electronic structure between the two compounds.  相似文献   

10.
Titanium nitride is a bioceramic material successfully used for covering medical implants due to the high hardness meaning good wear resistance. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters.The paper presents the experimental results in obtaining composite layers of titanium nitride and hydroxyapatite by reactive plasma spraying in ambient atmosphere. X-ray diffraction analysis shows that in both cases of powders mixtures used (10% HA + 90% Ti; 25% HA + 75% Ti), hydroxyapatite decomposition occurred; in variant 1 the decomposition is higher compared with the second variant. Microstructure of the deposited layers was investigated using scanning electron microscope, the surfaces presenting a lamellar morphology without defects such as cracks or microcracks. Surface roughness values obtained vary as function of the spraying distance, presenting higher values at lower thermal spraying distances.  相似文献   

11.
杜允  鲁年鹏  杨虎  叶满萍  李超荣 《物理学报》2013,62(11):118104-118104
采用射频磁控溅射方法, 在低功率和低温条件下利用纯氮气作为反应溅射气体制 备出不同In含量的三元氮化物CuxInyN薄膜. 研究发现In掺杂浓度对薄膜微结构、形貌、表面化学态以及光学特性有灵敏的调节作用. 光电子峰、俄歇峰、俄歇参数的化学位移变化从不同角度揭示了不同含量In掺杂引 起的原子结合情况的变化. XPS结果显示In含量小于8.2 at.%的样品形成了Cu-In-N键. 对In含量为4.6 at.%的样品进行XRD和TEM结构测试, 实验结果肯定了In原子填充到Cu3N的反ReO3结构的体心位置. 并且当In含量增至10.7 at.%时, 薄膜生长的择优取向从之前占主导地位的(001)方向转变为(111)方向. 此外, 随着In含量的增加, 薄膜的R-T曲线从指数形式变为线性. 当In含量为47.9 at.%时, 薄膜趋于大温区恒电阻率材料, 电阻温度系数TCR仅为-6/10000. 光谱测量结果显示In摻杂使得氮化亚铜掺杂薄膜的光学帯隙从间接帯隙变为直接帯隙. 由于Burstein-Moss效应, 帯隙发生蓝移, 从1.02 eV 到2.51 eV, 实现了帯隙连续可调. 关键词: 三元氮化物 薄膜 光学特性 氮化亚铜  相似文献   

12.
13.
For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.  相似文献   

14.
Tantalum nitride (TaN) nanocrystals have been successfully synthesized at 650 °C through a solid-state reaction in an autoclave. The X-ray powder diffraction pattern indicates that the product is a mixture of hexagonal and metastable cubic TaN. Transmission electron microscopy images and selected area electron diffraction patterns show that the hexagonal TaN crystallites consist of nanorod with a typical size of about 50×1000 nm and the cubic TaN crystallites are composed of uniform particles with an average size of about 30 nm.  相似文献   

15.
Extensive density-functional calculations on atomic chemisorption of H, B, C, N, O, F, Al, Si, P, S, and Cl on the polar TiC(1 1 1) and TiN(1 1 1) yield similar adsorption trends for the two surfaces: (i) pyramid-like adsorption-energy trends along the adatom periods; (ii) strongest adsorption for O, C, N, S, and F; (iii) large adsorption variety; (iv) record-high adsorption energy for O (8.4-8.8 eV). However, a stronger adsorption on TiN is found for elements on the left of the periodic table and on TiC for elements on the right. The results support that a concerted-coupling model, proposed for chemisorption on TiC, applies also to TiN.  相似文献   

16.
Hollow carbon nitride microspheres have been synthesized using a novel liquid phase electrodeposition technique. The microspheres are composed of numerous nanoparticles with size of about 5-30 nm. The diameters of the spheres range from 800 nm to 1.1 μm, and shell thickness is about 80-250 nm. This is the first attempt to synthesize carbon nitride with specific nanostructure by the electrodeposition method, which is proved to be facile and effective, and can be performed in an atmospheric environment and at a rather low temperature. The hollow carbon nitride may have potential applications as lubrication, catalysis, biomolecule adsorption, drug delivery, electronic materials, etc. in the future.  相似文献   

17.
The plasma-dynamic and spectral characteristics of a cylindrical magnetron-type gas discharge are studied experimentally. The radiation spectrum of the plasma is recorded in real time in the range 350–820 nm. Appropriate conditions for synthesis of TiO2 binary compound are found. They are provided by maintaining the intensities of the spectral lines of reactants and a plasma-forming gas at a desired level. The feasibility of monitoring the TiO2 film synthesis conditions from the spectral characteristics of the discharge plasma and from the variation of the discharge voltage is considered. Ellipsometric and spectral data for nanocrystalline titanium dioxide films indicate that the refractive index of the film depends on its thickness.  相似文献   

18.
Titanium samples were treated by the mixing technology with laser and plasma (LPN) using different laser power densities. These nitrided samples were then annealed at 473 K, 673 K, 873 K, and 1073 K for 2 h in vacuum, respectively. The samples before and after annealing were characterized at room temperature and compared in terms of microstructure. X-ray diffraction and cross-sectional optical microscopy studies showed that the layer structure of the titanium nitride coating is preserved after annealing at 1073 K when the coating is formed using a laser power density of 8.0 × 105 W/cm2. Therefore, titanium nitride coatings produced by LPN demonstrate excellent thermal stability and are potential candidates for high temperature tribological applications.  相似文献   

19.
The optical properties of rutile and anatase titanium dioxide (TiO2) are calculated from the imaginary part of the dielectric function using pseudopotential density functional method within its generalized gradient approximation (GGA) and a scissors approximation. The fundamental absorption edges calculated for the unit cell of both rutile and anatase are consistent with experimentally reported results of single crystal rutile and anatase TiO2 and with previous theoretical calculations. A significant optical anisotropy is observed in the anatase structure which holds promise for investigating the band gap modification with better visible-light response and provides a reliable foundation for addressing the effect of impurities on the fundamental absorption edge/band gap of anatase TiO2. Further calculations on the electronic structure and the optical properties of C-, N-, and S-doped anatase TiO2 are performed. The results are analyzed and discussed in terms of optical anisotropy and scissors approximations.  相似文献   

20.
Optical and color parameters of titanium nitride coatings deposited from an unseparated vacuum-arc plasma flux and a flux which is separated from macroparticles are culculated in varying sputtering regimes. Physics and Engineering Institute, National Academy of Sciences of Belarus, 4, Zhodinskaya St., Minsk, 220141. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 1, pp. 87–94, January–February, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号