首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-thin titanium and titanium nitride films on silicon substrate were obtained by ion beam sputtering of titanium target in vacuum and nitrogen atmosphere, using argon ions with energy of 5 keV and 15 μA target current. Elemental composition and chemical state of obtained films were investigated by X-ray photoelectron spectroscopy with using Mg-Kα X-ray radiation (photon energy 1253.6 eV). It was shown that it is possible to form both ultra-thin titanium films (sputtering in vacuum) and ultra-thin titanium nitride films (sputtering in nitrogen atmosphere) in the same temperature conditions. Photoelectron spectra of samples surface, obtained in different steps of films synthesis, detailed spectra of photoelectron emission from Si 2p, Ti 2p, N 1s core levels and also X-ray photoelectron spectra of Auger electrons emission are presented.  相似文献   

2.
Undoped zinc oxide thin films and nanostructured layers were grown by pulsed laser deposition on different substrates. They were characterized by scanning electron microscopy and Raman backscattering spectroscopy. Larger substrate mismatch leads to higher structural disorder in the thin films. Simultaneously, the intensity of the phonon mode at 580 cm−1 increases. However, for the nanostructured layers it remains constant. These observations are discussed in terms of the disorder activation of forbidden Raman modes.  相似文献   

3.
A noble metal Pt thin film was successfully grown on (0 0 1) SrTiO3 substrate by using a DC-sputtering technique. The surface morphology and growth features of the as-grown Pt films were investigated by scanning tunnelling microscopy. Growth conditions, such as pre-sputtering, deposition ambience, and oxygen ratio are found to greatly affect the orientation, the crystallinity, and the epitaxial behavior of Pt films on (0 0 1) SrTiO3. Single-crystalline Pt films have been achieved by introducing a few percentage oxygen into the sputtering ambient. The in-plane-relationship of the c-axis oriented Pt thin films on (0 0 1) SrTiO3 was determined to be (0 0 1)Pt∥(0 0 1)SrTiO3 and [0 0 1]Pt∥[0 0 1]SrTiO3. Oxygen in the sputtering ambient was found to be a key factor to achieve the epitaxial Pt films.  相似文献   

4.
Formation and properties of nickel doped TiO2 films prepared by sol-gel method were studied using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and energy dispersive X-ray analysis. The results demonstrate that sizes of TiO2 crystallites increase with increasing heating temperature. Also, at temperatures above 800 ° C diffusion of nickel onto the surfaces results in increased concentrations of nickel compounds on the surfaces. Similar to pure TiO2 films the light-induced modification of hydrophilicity is observed also in the case of nickel doped TiO2 films.  相似文献   

5.
6.
ABSTRACT

Bismuth manganite ceramics, consisted of two phases: cubic I23 and orthorhombic Pbam, were obtained by high-temperature sintering in the air. The powdered ceramics were sintered in gaseous nitrogen flow at stabilized temperature of TS = 870–1120 K for 4 h. Grain structure and chemical composition were checked by scanning electron microscopy (SEM). We observed changes in the grain shapes, the number and size of the hexagon-based parallelepipeds increased. The X-ray diffraction (XRD) test has shown that the orthorhombic BiMn2O5 phase formation was favored. The local disorder was tested by X-ray photoemission spectroscopy. Multi-component lines assigned to O 1s, Mn 2p, Bi 4f were detected. The ratio of intensities of particular components was influenced by the sintering conditions. The shape of valence band was not influenced by the sintering conditions. Electric resistivity was measured in 200–750 K range with the use of Ag and In electrodes. The activation energy increased slightly when the sintering temperature increased.  相似文献   

7.
Indium oxide films are deposited by pulsed laser deposition in the presence of oxygen atmosphere, on different substrates, namely GaAs, Si, quartz, and glass. The structural, morphological, and interface characteristics are studied. Cubic In2O3 phase is confirmed by high resolution X-ray diffraction measurements. While the films on Si, glass, and quartz substrates are polycrystalline, the films on GaAs exhibit a preferred orientation along (2 2 2) plane. The structure and crystalline nature of the films are also confirmed by Raman spectroscopy. Furthermore, Raman spectra show the appearance of gallium oxide modes arising due to Ga diffusion from the substrate. The morphology of the films deposited on different substrates is studied by atomic force microscopy and rms roughness values are obtained. A two-dimensional power spectral density analysis has been used to calculate the growth exponent (α). A value of α > 1 (α < 1) for films grown on GaAs/Si (quartz/glass) substrates suggests that the growth on crystalline substrates is governed by the linear diffusion model, whereas the growth on amorphous substrates follows the dynamic scaling behaviour. UV-visible study shows a high optical transmittance of >90% and a band gap value of 3.64 and 3.79 eV for the films deposited on quartz and glass substrates, respectively.  相似文献   

8.
The results of an IR study on the interaction of CO/O2 gas mixtures with planar Au/TiO2 model catalysts at elevated pressures and at room temperature are presented. The model catalysts were prepared by deposition of a flat titania film on a Ru(0 0 0 1) substrate and subsequent evaporation of gold on the titania film. In the presence of the gas mixtures, an IR band in the CO stretching region was formed, pointing to linearly adsorbed CO. The position of this band is nearly independent of the Au coverage employed. Compared to pure CO, the IR band is shifted to higher wave numbers when CO/O2 gas mixtures are used. Although the production of CO2 was detected in the CO oxidation reaction on the model catalysts, the formation of other IR bands, revealing the build-up of carbonates or other side-products which is usually observed for Au/TiO2 real powder catalysts, was very weak.  相似文献   

9.
The UV-light-induced hydrophilicity of amorphous titanium dioxide thin films obtained by radio frequency magnetron sputtering deposition was studied in relation with film thickness. The effect of UV light irradiation on the film hydrophilicity was fast, strong and did not depend on substrate or thickness for films thicker than a threshold value of about 12 nm, while for thinner films it was weak and dependent on substrate or thickness. The weak effect of UV light irradiation observed for the ultra-thin films (with thickness less than 12 nm) is explained based on results of measurements of surface topography, UV-light absorption and photocurrent decay in vacuum. Comparing to thicker films, the ultra-thin films have a smoother surface, which diminish their real surface area and density of defects, absorb partially the incident UV light radiation, and exhibit a longer decay time of the photocurrent in vacuum, which proves a spatial charge separation. All these effects may contribute to a low UV light irradiation effect on the ultra-thin film hydrophilicity.  相似文献   

10.
Titanium dioxide films were grown on Re(1 0 −1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at (n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.  相似文献   

11.
In this letter, we report on the use of tin as an effective surfactant material for silver growing on silicon oxide. We observed that submonolayers of Sn pre-deposited on SiO2 result in earlier film coalescence and formation of smoother Ag layers. We suggest that Sn atoms reduce the Ag-adatom mobility resulting in experimentally observed increased island density and decreased film roughness. Angle-resolved X-ray photoelectron spectroscopy reveals that Sn remains under the Ag layer giving circumstantial evidence that at later stages of Ag film growth Sn does not influence the interlayer transport.  相似文献   

12.
In this study, we carried out experiments and molecular dynamics simulations to identify the effect of Fe doping on the hydrophobicity of a titanium dioxide film. TiO2 and Fe-doped TiO2 films were fabricated in situ by atomic layer deposition without annealing. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterise the crystal structure and elemental composition. Iron doping resulted in the TiO2 becoming more hydrophobic at a macroscopic level, as estimated by atomic force microscopy observations and static contact angle measurements. Furthermore, the effect of iron doping on the structure and kinetics of water molecules on the exterior of TiO2 were studied by molecular dynamics simulations. On the basis of the XPS results, the Fe-TiO2 surface matrix has a Ti:Fe ratio of 36:5. In addition, the density distribution of oxygen and hydrogen atoms indicate that interfacial water molecules enter the Fe-TiO2 film more easily and hydrogen atoms in the water molecules are oriented upward at the interface. The self-diffusion coefficients indicate that iron doping makes the TiO2 more hydrophobic, which is consistent with the macroscopic test results.  相似文献   

13.
以渗透结晶防水材料为研究对象,将渗透结晶防水材料掺入水泥基材料制备水泥基渗透结晶防水材料。基于X射线衍射仪(XRD)和傅里叶红外光谱仪(FTIR)分析了渗透结晶防水材料的组分,在此基础上研究了渗透结晶防水材料对构件力学性能的影响,利用扫描电子显微镜(SEM)与X射线衍射仪(XRD)对水泥基渗透结晶防水材料构件的微观形貌和物相组成进行分析,结合抗压强度回复率、抗渗压力等相关数据,阐明水泥基渗透结晶防水材料作用机理。研究表明,渗透结晶防水材料的主要成分为氧化钙、硅酸钠、二硅酸钠、碳酸钙、氢氧化钙、稠环芳烃类减水剂、乙二胺四乙酸盐。掺入渗透结晶防水材料的水泥基渗透结晶防水材料,其力学性能、抗渗性能、自愈合性能优越,即7,14和28 d的抗折强度分别为2.65,3.29和4.35 MPa,抗压强度分别为12.11,14.57和16.77 MPa;一次抗渗压力与二次抗渗压力分别为0.8和0.9 MPa;7,14,28和56 d的抗压回复率分别为80.91%,90.35%,100.44%和105.90%。水泥基渗透结晶防水材料的作用机理:渗透结晶防水材料中硅酸钠、二硅酸钠与水泥中的钙离子发生反应形成水化硅酸钙凝胶(C—S—H凝胶),有效修补裂缝;氧化钙、碳酸钙以及氢氧化钙作为钙离子补偿剂提供大量钙离子,在水环境下有效促使裂缝愈合;碳酸钙在水环境中缓慢溶解产生Ca2+,CO2-3以及HCO-3,CO2-3与HCO-3结合大量钙离子生成碳酸钙结晶,与C—S—H凝胶协同作用对水泥基材料的裂缝进行封堵。  相似文献   

14.
G. Soto   《Applied Surface Science》2004,230(1-4):254-259
Titanium carbide (TiCx) thin films were grown on (1 0 0)-Si substrates by a pulsed laser deposition (PLD) method using a Ti target in methane gas. The films are characterized in situ by Auger (AES), electron energy loss (EELS) and X-ray photoelectron spectroscopies (XPS). It was found that the reaction between the ablated Ti species and CH4 in the plasma plume influenced the C:Ti ratio. XPS numerical fitting for the C 1s transition revealed three Gaussians components. The main component, binding energy of 282.8 eV, is assigned to C making bonds with Ti, like in stoichiometric TiC. The second component, binding energy of 284.9 eV, is assigned to C---C bonds. A third component is found for films deposited at pressures higher than 25 mTorr at 286.5 eV. A post-deposition thermal treatment demonstrates that the Ti---C and C---C peaks are very stable, whereas, the third peak tends to decrease for temperatures higher than 200 °C. It is assumed that this last component is due to carbonyl complexes remnant in films. Finally, it can be concluded that the titanium carbide films processed by PLD is a chemically inhomogeneous material; mostly composed of sub-stoichiometric TiC and particulates of segregated carbon.  相似文献   

15.
This paper presents the investigation of low dimensional GaN structures synthesized from Ni-catalyzed chemical vapour deposition (CVD) method under two different conditions, i.e. Ga source and substrate position. Comparative studies based on the morphological, structural and optical characteristics of synthesized GaN wires were carried out in this work. The variations of morphological and dimensional aspects of the GaN wires were attributed to the position of Ga precursor and substrates. These factors were found to be able to influence the degree of supersaturation of gaseous reactants, which is essential in the growth of GaN wires by vapour-liquid-solid (VLS) mechanism. The synthesized GaN wires typically were found to have diameters ranging 35-80 nm (nanowires) and 0.4-1.3 μm (microwires), respectively, with length up to several ten of microns. X-ray diffraction (XRD) results indicated that the grown GaN wires were hexagonal wurzite phase. Ultraviolet (UV) and blue emissions were observed from photoluminescence (PL) measurements. Raman spectra displayed asymmetrical and broadened bands which could be ascribed to the size effect, surface disorder and internal strain of the synthesized GaN wires.  相似文献   

16.
P. Li  J. Liu  P.A. Crozier 《Surface science》2006,600(3):693-702
Nucleation and growth mechanisms of Ni nanoparticles synthesized via an incipient wetness technique on a high-surface area titania support (i.e., a mixture of anatase and rutile) are studied using environmental transmission electron microscope (ETEM). Most Ni nanoparticles are found to nucleate from the Ni precursor coated on the surface of the titania support. Even though both anatase and rutile supports are the nucleation sites for Ni nanoparticles, it was observed that the particles have different morphologies on the supports, i.e., a non-wetting morphology on the anatase support versus a wetting morphology on the rutile {1 0 1}. This is because the interfacial energy of Ni/rutile is lower than that of Ni/anatase. Titania clusters are found to nucleate on the surface of the Ni particles during in situ ETEM reduction, indicating that the presence of partial titania overlayers is directly related to the synthesis of the Ni/TiO2 catalysts. The growth mode of the Ni nanoparticles on the titania support is three-dimensional, while that of the rutile cluster on the surface of the Ni is two-dimensional layer-by-layer.  相似文献   

17.
利用金属有机化学气相沉积(MOCVD)法,在Si衬底上外延生长ZnO薄膜。为了改善氧化锌薄膜的质量,首先在Si衬底上生长低温ZnO缓冲层,然后再生长高质量的ZnO薄膜。通过XRD、SEM、光致发光(PL)光谱的实验研究,发现低温ZnO缓冲层可有效降低ZnO薄膜和Si衬底之间的晶格失配以及因热膨胀系数不同引起的晶格畸变。利用低温缓冲层生长的ZnO薄膜的(002)面衍射峰的强度要比直接在Si上生长的ZnO薄膜样品的高,并且衍射峰的半高宽也由0.21°减小到0.18°,同时有低温缓冲层的样品室温下的光致发光峰也有了明显的增高。这说明利用低温缓冲层生长的ZnO薄膜的结晶质量和光学性质都得到了明显改善。  相似文献   

18.
A novel electrode having the compositional sequence Si/TiOx/Pt/TiOx was developed for ozone electrogeneration. The spin-coating method, the sputtering deposition technique, and a post-annealing procedure were all combined to assemble the electrode composition. A two-compartment electrolytic cell separated by a Nafion membrane was used to generate ozone galvanostatically. The X-ray photon electron spectroscopy (XPS) and atomic force microscopy (AFM) were used to reveal the electrode composition and morphology. The influence of several factors including the electrode's annealing temperature, the electrolyte composition, and the electrolysis’ current density on the efficiency of ozone production was investigated. A maximum ozone generation efficiency of 2.5% was obtained at 74 mA cm−2 at room temperature. Interestingly, the electrode preserved (ca. 80%) of its original activity to produce ozone after 50 h of continues electrolysis at 74 mA cm−2 at room temperature.  相似文献   

19.
We report on the growth of terbium iron garnet (TbIG, Tb3Fe5O12) thin films having anomalously large coercivity and in-plane easy axis of magnetization. The TbIG thin films were prepared at room temperature (RT) on Pt/Si(1 0 0) substrates by pulsed laser deposition technique. The films deposited at RT were X-ray amorphous and do not show any magnetic order. Annealing of the RT deposited film at 900 °C resulted into fully textured (532) TbIG film. Atomic force microscopy and cross-sectional scanning electron microscopy studies of the TbIG films showed good surface quality with an average surface roughness of 5.0 nm and thickness of about 300 nm, respectively. The M-H loops measured at 20 K for TbIG films, exhibit about an order of magnitude enhancement in the coercivity value (Hc) than the single crystal. In-plane and out-of-plane M-H loops revealed that the easy axis of the magnetization lies within the film’s plane. In-plane magnetization combining with large Hc value of the TbIG thin film may be of scientific interest for the possible applications.  相似文献   

20.
The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO2-50CaO-15P2O5-(10 − x)Fe2O3-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 °C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca3Si2O7) phase is also observed when glass is heat treated at 1000 °C. The microstructure of the glass-ceramics heat treated at 800 °C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 °C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号