首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report on a comparative study of the effect of Fe2O3 nanoparticles (NP), introduced onto a thin oxide layer formed on silicon and germanium surfaces, on the thermal decomposition pathway of the individual oxide layers. On both the surfaces, NP of Fe2O3 undergo a reduction reaction through a bonding partner change reaction, where the oxygen atoms change from Fe to Si or Ge. On both the surfaces, annealing results in the conversion of the suboxide-like species to dioxide-like species (SiOx to SiO2 and GeOx to GeO2 respectively for Si and Ge surfaces), until the oxide layer decomposes following the desorption of the respective monoxide species (SiO and GeO). Both the Si and Ge corelevels show a larger chemical shift (4.1 and 3.51 eV in Si 2p and Ge 3d corelevels, respectively) for the as-prepared oxide samples with the NP, at room temperature compared to that without the NP (3.7 and 3.4 eV), indicating a catalytic enhancement of the dioxide formation. Selective formation of silicon oxides leads to encapsulation of the nanoparticles and acts like a protective layer, preventing the oxidation of Fe.  相似文献   

2.
Controllable size of silicon (Si) nanocrystals can be achieved by a two-step rapid thermal annealing technique consisting of rapid annealing at 1000°C in nitrogen ambient and rapid oxidation at 600–800°C of a radio frequency magnetron co-sputtered Si-rich oxide/SiO2 superlattice structure. The photoluminescence (PL) spectra related to Si nanocrystals were observed in the visible range (600–900 nm). After rapid oxidation, the size of the nanocrystals was reduced and the quality of the Si nanocrystal/SiO2 interface was improved, resulting in a blue shift and an increase of the PL peak intensity. Finally, annealing in air increases the PL intensity further.  相似文献   

3.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

4.
We report on continuous-wave laser induced crystallisation processes occurring in Si/SiO2 multiple quantum wells (MQW), prepared by remote plasma enhanced chemical vapour deposition of amorphous Si and SiO2 layers on quartz substrates. The size and the volume fraction of the Si nanocrystals in the layers were estimated employing micro-Raman spectroscopy. It was found that several processes occur in the Si/SiO2 MQW system upon laser treatment, i.e. amorphous to nanocrystalline conversion, Si oxidation and dissolution of the nanocrystals. The speed of these processes depends on laser power density and the wavelength, as well as on the thickness of Si-rich layers. At optimal laser annealing conditions, it was possible to achieve ∼100% crystallinity for 3, 5 and 10 nm thickness of deposited amorphous Si layers. Crystallization induced variation of the light absorption in the layers can explain the complicated process of Si nanocrystals formation during the laser treatment.  相似文献   

5.
Yo-Shan Lu 《Surface science》2007,601(18):3788-3791
Using atomic force microscope (AFM) tip, local large-area oxide bumps were induced on a native SiO2 layer applied with a static 10 V in an ambient surrounding. It can be seen in the backscattered electron (BE) images that the oxide bumps were SiOx layer, not the native SiO2 layer. Also, the spectra of energy dispersive X-ray spectrometer (EDS) displayed that the oxide bumps contained oxygen more than did the native SiO2 layer, indicating that the O/Si ratio of the oxide bump is greater than two. A comparison of the growth rates of the point oxide protrusions on the oxide bumps and on the native SiO2, can be used to directly determined the composition stoichiometry (the O/Si ratio (=x)) of the oxide bumps.  相似文献   

6.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

7.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

8.
We report about the contribution of thermally grown SiOx overlayer on the SiOx/Si interface (with oxidation states Sin+, where n = 1, 2, 3, 4) to the optical losses of a resonant spectroscopic cavity. The experiments on Si oxide thin films were performed in evanescent wave for Si samples in contact with a total internal reflection surface of a BK7 prism. The evanescent field can be exploited to investigate properties and processes such as the absorption of thin film or solid/air interface reactions. The results show that the oxide overlayer thickness grows with the thermal exposure time and is limited after more than 7 h of treatment. Transmission electron microscopy has been used for the native oxide thickness measurement and angle-resolved X-ray photoelectron spectroscopy used to determine the thermal oxide thickness. A change of absorption coefficient Δα in the range 100–200 cm?1 is obtained by evanescent-wave cavity ring-down spectroscopy (EW-CRDS) for thermal silicon oxide overlayer, in agreement with the general trend from literature. The evaluation from the EW-CRDS experiments presents the used setup as a competitive method for measuring the absorption properties of thin overlayer.  相似文献   

9.
Silicon nanocrystals synthesized by electron beam (e-beam) evaporation of Si and SiO2 mixture are studied. Rutherford backscattering spectrometry of the as-deposited Si-rich silicon dioxide or oxide (SRO) thin film shows that after evaporation, the Si and SiO2 concentration is well kept, indicating that the e-beam evaporation is suitable for evaporating mixtures of Si and SiO2. The SRO thin films are annealed at different temperatures for two hours to synthesize silicon nanoerystals. For the sample annealed at 1050℃, silicon nanoerystals with different sizes and the mean diameter of 4.5 nm are evidently observed by high resolution transmission electron microscopy (HRTEM). Then the Raman scattering and photoluminescence spectra arising from silicon nanocrystals are further confirmed the above results.  相似文献   

10.
Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si1−xCx nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si1−xCx nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1−xCx nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.  相似文献   

11.
We present a study on amorphous SiO/SiO2 superlattice performed by grazing-incidence small-angle X-ray scattering (GISAXS). Amorphous SiO/SiO2 superlattices were prepared by high-vacuum evaporation of 3 nm thin films of SiO and SiO2 (10 layers each) onto Si(1 0 0) substrate. After the deposition, samples were annealed at 1100 °C for 1 h in vacuum, yielding to Si nanocrystals formation. Using a Guinier approximation, the shape and the size of the crystals were obtained. The size of the growing nanoparticles in the direction perpendicular to the film surface is well controlled by the bilayer thickness. However, their size varies more significantly in the direction parallel to the film surface.  相似文献   

12.
One-dimensional Ag/Si/SiOx capsule nanostructures have been synthesized by thermal evaporation of the mixture of SiO and Ag2O. Products were analyzed by using SEM, TEM, HREM and element map. Two kinds of morphologies were observed. Inside the amorphous SiOx shell, Ag nanowires interspersed by short segments of Si were formed when Ag content was higher than Si. Ag and Si contacted well and nanosize MS (metal-semiconductor) structures were obtained. One-dimensional periodic nanostructures that Ag particles embedded in the nanowire were synthesized when Si content was higher than Ag. SiOx nanotubes were also observed. Structure analysis shows that Ag/Si/SiOx nanostructures are grown by a self-assembled SiOx template mechanism. And the growth of SiOx nanotubes is tightly related to the adding of Ag. PACS 81.07.Bc; 81.10.Bk; 61.14.-x  相似文献   

13.
The laser treatment of two-layer Si-Al2O3 target at λ=1064 nm and P=170 W in a N2+O2 atmosphere by electron microscopy, atomic force microscopy, X-ray microanalysis, and IR-spectroscopy was investigated. It is established that in the stage of fracture of a silicon plate, the ablation products were silicon clusters into which, when passing over, oxygen and nitrogen diffused. On collective plate, a SiOxN composite film formed. In the stage of fracture of an alumina plate, the oxidation of silicon in the channel zone and the interaction of Al and Si oxides, accompanied by their nitration, occurred. In this stage, evolved oxide vapors and ejected mullite drops deposit on the SiOxN film. On collective plate, mullite nanowhiskers grew from mullite drops by the vapor-liquid-solid body mechanism.  相似文献   

14.
Angle resolved photoemission studies of the Si 2p and Si 1s core levels and the Si KL2,3L2,3 Auger transitions from SiO2/SiC samples are reported. Most samples investigated were grown in situ on initially clean and well ordered √3×√3 reconstructed 4H-SiC(0 0 0 1) surfaces but some samples were grown ex situ using a standard dry oxidation procedure. The results presented cover samples with total oxide thicknesses from about 5 to 118 Å. The angle resolved data show that two oxidation states only, Si+1 and Si+4, are required to explain and model recorded Si 2p, Si 1s and Si KLL spectra.The intensity variations observed in the core level components versus electron emission angle are found to be well described by a layer attenuation model for all samples when assuming a sub-oxide (Si2O) at the interface with a thickness ranging from 2.5 to 4 Å. We conclude that the sub-oxide is located at the interface and that the thickness of this layer does not increase much when the total oxide thickness is increased from about 5 to 118 Å.The SiO2 chemical shift is found to be larger in the Si 1s level than in the Si 2p level and to depend on the thickness of the oxide layer. The SiO2 shift is found to be fairly constant for oxides less than about 10 Å thick, to increase by 0.5 eV when increasing the oxide thickness to around 25 Å and then to be fairly constant for thicker oxides. An even more pronounced dependence is observed in the Si KLL transitions where a relative energy shift of 0.9 eV is determined.The relative final state relaxation energy ΔR(2p) is determined from the modified Auger parameter. This yields a value of ΔR(2p)=−1.7 eV and implies, for SiO2/SiC, a “true” chemical shift in the Si 2p level of only ≈0.4 eV for oxide layers of up to 10 Å thick.  相似文献   

15.
Annealing-temperature dependence of the thermal stability and chemical bonding states of AlOxNy/SiO2/Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlOxNy samples in N2 ambient in 600-800 °C promotes the formation of SiO2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlOxNy to form volatile SiO and Al2O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 °C. The released N due to the breakage of the Al-N bonding will react with the SiO2 interfacial layer and lead to the formation of the Si3-N-O/Si2-N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlOxNy/Si gate stacks in future CMOS devices.  相似文献   

16.
采用对非晶氧化硅薄膜退火处理方法,获得纳米晶硅与氧化硅的镶嵌结构.室温下观察到峰位为2.40eV光致发光.系统地研究了不同退火温度对薄膜的Raman谱、光荧光谱及光电子谱的影响.结果表明,荧光谱可分成两个不随温度变化的峰位为1.86和2.30eV的发光带.Si2p能级光电子谱表明与发光强度一样Si4+强度随退火温度增加而增加.Si平均晶粒大小为4.1—8.0nm,不能用量子限制模型解释蓝绿光的发射.纳米晶硅与SiO2界面或SiO2中与氧有关的缺陷可能是蓝绿光发射的主要原因 关键词:  相似文献   

17.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

18.
We report a facile method to prepare thin film of Si nanocrystals embedded SiO2 (Si-NC:SiO2) by annealing a photoresist of hydrogen silsesquioxane (HSQ) at 1100 °C in nitrogen via a phase separation process. The spatial density, photoluminescence intensity, the photoluminescence efficiency and electroluminescence intensity of Si-NC of the sample made from HSQ, or HSQ sample, were 15.0, 5.5, 1.5 and 7.9 times as large as those of the sample made by a traditional method of annealing SiOx (1<x<2), or SiOx sample, respectively. Meanwhile, the turn-on voltage of electroluminescence of the HSQ sample was only 3.8 eV, which was more than 2 times smaller than that of the SiOx sample. The results of this work may find application in developing high brightness Si light sources.  相似文献   

19.
《Current Applied Physics》2014,14(5):653-658
This paper concerns the topic of surface passivation properties of rapid thermal oxidation on p-type monocrystalline silicon wafer for use in screen-printed silicon solar cells. It shows that inline thermal oxidation is a very promising alternative to the use of conventional batch type quartz tube furnaces for the surface passivation of industrial phosphorus-diffused emitters. Five minutes was the most favorable holding time for the rapid thermal oxidation growth of the solar cell sample, in which the average carrier lifetime was increased 19.4 μs. The Fourier transform infrared spectrum of the rapid thermal oxidation sample, whose structure was Al/Al-BSF/p-type Si/n-type SiP/SiO2/SiNx/Ag solar cell with an active area of 15.6 cm2, contained an absorption peak at 1085 cm−1, which was associated with the Si–O bonds in silicon oxide. The lowest average reflectance of this sample is 0.87%. Furthermore, for this sample, its average of internal quantum efficiency and conversion efficiency are respectively increased by 8% and 0.23%, compared with the sample without rapid thermal oxidation processing.  相似文献   

20.
The phase separation in amorphous silicon suboxide (a-SiOx) films upon thermal annealing for the formation of light emitting silicon nanocrystals (Si-NCs) was studied through the correlation of photoluminescence (PL) and photoluminescence excitation (PLE) with structural and optical properties. The PL and PLE features and the structural and optical properties show a strong dependence on the annealing process and reveal that the precipitation of the excess Si in a-SiOx and the formation of Si-NCs from the precipitated Si are two separate processes which should be distinguished in the phase separation in a-SiOx. They proceed at different temperatures and the formation of Si-NCs is a slow process compared with the precipitation of the excess Si. The nanocrystal size and size distribution evolve with annealing time at the initial stages and are mainly dependent on annealing temperature for a certain O content in the initial a-SiOx with the density of the formed Si-NCs increasing with longer annealing duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号