首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion, stability, electronic structure, and bonding of Fe/WC interfaces were studied using first-principles calculations. The preferred stacking sequence is HCP structure that Fe atoms continue the natural stacking sequence of the bulk WC. For two different interfaces with HCP stacking geometry (C-HCP and W-HCP), the work of adhesion of the optimized Fe/WC interfaces are 9.7 J m−2 for C-HCP and 5.1 J m−2 for W-HCP, respectively. The effects of the interface on the electronic structures of both the metal Fe and ceramic WC are mainly localized within the first and second layers of the interface. C-HCP interface has strong covalency and W-HCP interface is dominated by metallic bonds. The magnetic moments of Fe atoms at interface are decreased in both interfaces. Calculations of the interfacial energies provide theoretical evidence for the excellent wear behaviors of Fe/WC composites. Besides, the chemical bonding properties for the interfacial atoms are also discussed in this paper based on Milliken population method.  相似文献   

2.
We use density functional theory to evaluate the stability of molybdenum disilicide coatings on a nickel substrate, as a possible bond coat alloy for high temperature coating applications. We consider the MoSi2(0 0 1)/Ni(1 1 1), MoSi2(1 0 0)/Ni(1 1 1), and MoSi2(1 1 0)/Ni(1 1 1) interfaces and predict quite strong (3.5-3.8 J/m2) adhesion of this metal-silicide ceramic to nickel. The origin of this strong adhesion is elucidated by examining the geometric and electronic structure of the interfaces. We predict that Mo and Si atoms at the interface primarily occupy Ni 3-fold hollow sites, the typical adsorption site on Ni(1 1 1). Projected local densities of states and electron density difference plots reveal a mixture of localized, covalent Si-Ni bonds and more delocalized metallic Mo-Ni bonding, as the origin of the strong interfacial bonding. As emphasized in our earlier work, creation of strong covalent bonds at interfaces results in very strong adhesion. Such strong adhesion makes MoSi2 a potential candidate for use in thermal barrier applications, in conjunction with a yttria-stabilized zirconia topcoat.  相似文献   

3.
The atomic and electronic structures of Me/ZrO2(0 0 1) interfaces, where Me is Ni, Fe or a Ni-Fe alloy, are investigated by the plane wave pseudopotential method within density-functional theory. The work of separation of metal films from oxide substrate for the O- and Zr-terminated Me/ZrO2(0 0 1) interfaces is calculated. High adhesion at both Me/(ZrO2)O and Me/(ZrO2)Zr interfaces is found. The effect of oxygen vacancies on the adhesion at the metal-ceramic interfaces is also investigated. It is shown that Ni(Fe)-O interaction at the O-terminated interface weakens in the presence of interfacial oxygen vacancies. At interfaces with Ni-Fe alloys the adhesion depends strongly on the composition of the interfacial layers and their magnetic properties.  相似文献   

4.
An approach is described to promote epitaxial growth of thin metal films on single-crystal metal substrates by stabilizing the interface with an extremely thin metallic interlayer. A single atomic layer of a metal is deposited at the interface, Ti on Al(1 0 0) in this case, prior to the growth of the metal film of interest to produce an epitaxial interface in a system that is otherwise characterized by interdiffusion and disorder. The stabilized interface reduces interdiffusion and serves as a template for ordered film growth. Using Rutherford backscattering and channeling techniques along with low-energy electron diffraction and low-energy He+ scattering, it is demonstrated that an atomically thin layer of Ti metal deposited at the Fe-Al interface, a system well known for considerable intermixing at room temperature, reduces interdiffusion and promotes the epitaxial growth of Fe films on the Al(1 0 0) surface. The decrease in ion scattering yield for Al atoms, Fe-Fe shadowing and long-range order of the surface suggest that the epitaxial growth of Fe is greatly improved when the Ti interlayer is introduced prior to Fe deposition. Off-normal ion channeling experiments provide clear evidence for the bcc structure of Fe on the Ti/Al(1 0 0) template with the measured average (1 0 0) interplanar distance of 1.44 Å in the Fe overlayer.  相似文献   

5.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

6.
The electronic structure of 3d transition-metal atoms on face-centered cubic Co(0 0 1) substrate is determined within ab initio density functional calculations in the gradient corrected approach. Calculations are performed for ordered surface configuration with coverage equal to 0.25, 0.5, 0.75 and 1 ML. For Ni and Fe a ferromagnetic coupling with the Co atoms is always obtained independently of the concentration. Moreover the values of the magnetic moments remain similar. For Mn a ferromagnetic coupling is obtained for low-coverage whereas an in-plane antiferromagnetic coupling is found for a complete Mn overlayer on Co(0 0 1). Also, for Sc, Ti, V and Cr a drastic modification of the magnetic map is observed when we go from low-coverage to the monolayer. Cr (Mn) adatoms present antiferromagnetic (ferromagnetic) coupling with Co(0 0 1) for x = 0.25 whereas an in-plane antiferrimagnetic coupling is obtained for x = 1.00.  相似文献   

7.
The anisotropic magnetoresistance (AMR) of a Ta (5 nm)/MgO (3 nm)/Ni81Fe19 (10 nm)/MgO (2 nm)/Ta (3 nm) film with MgO-Nano Oxide Layer (NOL) increases dramatically from 1.05% to 3.24% compared with a Ta (5 nm)/Ni81Fe19 (10 nm)/Ta (3 nm) film without the MgO-NOL layer after annealing at 380 °C for 2 h. Although the MgO destroys the NiFe (1 1 1) texture, it enhances the specular electron scattering of the conduction electrons at the NOL interface and suppresses the interface reactions and diffusion at the Ta/NiFe and NiFe/Ta interfaces. The NiFe (1 1 1) texture was formed after the annealing, resulting in a higher AMR ratio. X-ray photoelectron spectroscope results show that Mg and Mg2+ were present in the MgOx films.  相似文献   

8.
Keune  W.  Sturhahn  W. 《Hyperfine Interactions》1999,123(1-4):847-861

Inelastic nuclear resonant absorption of synchrotron radiation is an efficient and unique method for the direct measurement of vibrational density of states (VDOS) of thin films and interfaces that contain Mössbauer isotopes. This is demonstrated for the 57Fe nuclear resonance in the case of amorphous and crystalline Tb–Fe alloy thin films and buried Fe/Cr interfaces in epitaxial α-Fe(0 0 1)/Cr(0 0 1) superlattices.

  相似文献   

9.
Metal silicide technology has been attracting attention worldwide and it constitutes an active, frontier area of research. Research in this area has not only stimulated the exploration of new phenomena, but is also leading to a technological revolution. Electron beam evaporation in ultra high vacuum (UHV) environment is one of the best techniques to grow thin metal film on Si substrate. Metal silicide contact is an interesting and important part of integrated circuit. Due to selective growth and high thermal stability metal silicides are used in very large scale integrated (VLSI) and ultra large scale integrated (ULSI) applications. In this paper our interest is to show GIXRD, XRR and SPM measurement on C (2 nm)/Cr (25 nm)/Si (1 0 0) system in which thin films were deposited using electron beam evaporation technique at 2 × 10−8 Torr vacuum. The capping layer of 2 nm carbon is deposited to stop contamination. The C (2 nm)/Cr (25 nm)/Si (1 0 0) system were annealed in 10−5 Torr vacuum at temperatures 300-600 °C to study the formation of chromium silicide. Structural properties at the interface has been studied by grazing incidence X-ray diffraction (GIXRD), which shows formation of Cr3Si and CrSi2 as a result of interface mixing due to annealing. The morphology of the system was investigated by AFM in tapping mode. It was found that nano-rod type structures were formed with annealing at 600 °C temperature.  相似文献   

10.
The possibility of tailoring the spin density waves in Fe/Cr(0 0 1) multilayers through the selective inclusion of Sn, V and Mn monolayers is investigated with the density functional tight-binding linear muffin-tin orbital method in the generalized gradient approximation of the exchange and correlation potential. Despite the non-magnetic character of Sn and V when substituting Cr atoms located at the nodes, the modifications induced on the spin density waves are important due to the strong hybridization. In general we find that V modifies drastically the global features of the spin density waves leading to the onset of a magnetically dead region in the Cr spacer whereas Mn inserted at the nodes rather destroys the density wave working in favor of stabilizing the layered antiferromagnetic structure. The trends obtained are consistent with experimental data when available. Since both the magnetic profile and the position of the nodes at the spacer can be modified, the present results are relevant in the context of the spin-dependent transport through magnetic multilayers in which the magnetoresistance will vary if the scattering regions across the transport direction are modified.  相似文献   

11.
Epitaxial Ni80Fe20(5 nm)/Ru(x nm)/Ni80Fe20(5 nm) trilayers with thickness x = 0.5-3.0 were prepared on Al2O3 substrate. The structure, magnetic properties and magnetic depth profiles of the epitaxial Ni80Fe20(1 1 1)/Ru(0 0 0 1) multilayers were studied by X-ray diffraction, X-ray magnetic circular dichroism and polarized neutron reflectivity. A strongly enhanced orbital moment of Fe in the permalloy layer was observed at the Ru thickness of the first anti-ferromagnetic coupling, which might be due to an interference between two interfaces. At this Ru thickness, the neutron reflectivity data show a 0.8 nm layer at the interface with the magnetic moment perpendicular to the surface plane, which might be due to the enhanced spin-orbital coupling at interface.  相似文献   

12.
Epitaxial Fe(1 1 0) films with thicknesses of 100-800 nm on Cu(0 0 1) and Ni(0 0 1) buffer layers grown on MgO(0 0 1) substrates have been fabricated. These films contain Fe(1 1 0) crystallites which are in the Pitsch orientation relationship. Magnetization and the fourfold in-plane magnetic anisotropy constants of these films have been determined by torque measurements. All the samples under study are characterized by a fourfold magnetic anisotropy with easy axes parallel to the [1 0 0] and [0 1 0] directions of Cu(0 0 1) and Ni(0 0 1) layers. The measured values of the constant for Fe(1 1 0)/Cu(0 0 1) are found to depend on deposition temperature; a maximum value of (2.5±0.1)×105 erg/cm3 is reached after annealing at 600 °С. The in-plane torque measurements on Fe(1 1 0)/Ni(0 0 1) bilayers obtained at 300 °С, on the other hand, exhibit a constant value of (2.7±0.1)×105 erg/cm3. Assuming an exchange interaction between the Fe(1 1 0) crystallites, which are in the Pitsch orientation relationship, the fourfold in-plane magnetic anisotropy has been calculated as 2.8×105 erg/cm3. The deviations of the experimental values from the predicted one may be explained by the formation of a polycrystalline phase within the Fe(1 1 0) layer and a partial disorientation of the epitaxial crystallites.  相似文献   

13.
The spin- and angle-resolved photoelectron spectroscopy from ultrathin Cr films on Fe(1 1 0) is investigated by means of first-principles electronic structure and photoemission calculations. The antiferromagnetic ordering in the Cr films leads in dependence on film thickness to a rapidly decreasing and oscillating photoelectron spin polarization, in reasonable agreement with recent experiments (Dedkov (2007) [1]). The oscillation period is explained by quantum-well states in the Cr film and by a Fermi surface nesting vector. The importance of transition matrix elements is highlighted. The findings point to a noncollinear magnetic structure at the Fe/Cr interface.  相似文献   

14.
T. Bernhard 《Surface science》2006,600(9):1877-1883
The structure and magnetism of thin epitaxial Fe layers grown on Cu(0 0 1) is investigated by grazing scattering of fast H and He atoms. Information on the atomic structure of the film and substrate surfaces is obtained by making use of ion beam triangulation with protons. The magnetic behavior is studied via the polarization of light emitted after capture of spin-polarized electrons into excited atomic terms during scattering of He atoms. For the formation of bcc(1 1 0)-like Fe films at higher coverages, we detect differences in structural and magnetic properties for room and low temperature growth. We suggest that the crystalline structure depends on the film morphology and that Cu impurities affect the magnetic properties.  相似文献   

15.
X-ray reflectivity analyses were performed in the Si/WTi (7 nm)/NiFe (30 nm)/FeMn (13 nm)/NiFe (10 nm)/WTi (7 nm) exchange-biased system prepared by magnetron sputtering under three different argon working pressures. Layer-by-layer analyses were realized in order to obtain the interfacial roughness parameters quantitatively. For a fixed argon pressure, the root-mean-square roughness (including the atomic grading) of the upper (FeMn/NiFe) interface are greater than that for the lower one in all studied samples. Argon working pressure also has severe influence over the NiFe/FeMn interfaces, being more pronounced at the upper interfaces.  相似文献   

16.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of Triton X-100 (TX-100) and methanol and ethanol mixtures at constant TX-100 concentration equal to 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 6 × 10−4 and 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA). Using measured contact angle values the relationships between cos θ, adhesion tension and surface tension of the solutions were determined, and on their basis the critical surface tension of PTFE and PMMA wetting was calculated. The obtained average value of the critical surface tension of PTFE wetting is lying in the range of the PTFE surface tension values which can be found in the literature, while for PMMA it is even lower than the Lifshitz-van der Waals component of its surface tension. From the relationship between the adhesion and surface tension and Lucassen-Reynders equation it results that in the case of PTFE the adsorption at the PTFE-solution and solution-air interfaces is the same, which was confirmed by a linear relationship between the cos θ and 1/γLV and intercept on cos θ axis equal to −1. However, for PMMA the adsorption of the surface active agents at solution-air interface is higher than at PMMA-solution. Using the values of the contact angle the values of the adhesion work of solution to the PTFE and PMMA surface were also determined, which are constant for PTFE, but for PMMA decrease with alcohol concentration increase. Next, using the contact angle values in the Young equation, the PTFE(PMMA)-solution interface tension was also calculated. The obtained values of PTFE-solution interface tension were compared with those evaluated from the Szyszkowski, Connors and Fainerman and Miller equations, and good agreement between these values was observed for all series of TX-100 and alcohol mixtures at a low alcohol concentration.  相似文献   

17.
The electronic properties of InSe/M (M  Pd, Au) interfaces have been studied by X-ray photoemission measurements. For the InSe/Pd interface, it has been found that Pd atoms diffuse into the InSe lattice at early stages of Pd coverage, acting as acceptor centers. As the Pd coverage increases, a Pd-InSe reaction determines the electronic behaviour of the interface. However, for Pd coverages higher than 1 ML, the barrier formation tends to be controlled by an emerging bulklike Pd overlayer. Despite the atomic structure of this system is far from that expected for an ideal Schottky one, the final electronic barrier value is close to that expected for an abrupt InSe/Pd Schottky interface. On the contrary, the InSe/Au system appeared to behave as a quasi-ideal abrupt Schottky interface. Annealing processes performed at temperatures higher than 600 K alter this scheme, as revealed by X-ray absorption spectroscopy measurements, enhancing diffusion of Au atoms into InSe. In any case, the electronic barrier results to be determined by the Au overlayer formed.  相似文献   

18.
We report on tunnelling magnetoresistance (TMR), current–voltage (IV) characteristics and low-frequency noise in epitaxially grown Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) magnetic tunnel junctions (MTJs) with dimensions from 2×2 to 20×20 μm2. The evaluated MgO energy barrier (0.50±0.08 eV), the barrier width (13.1±0.5 Å) as well as the resistance times area product (7±1 MΩ μm2) show relatively small variation, confirming a high quality epitaxy and uniformity of all MTJs studied. At low temperatures (T<10 K) inelastic electron tunneling spectroscopy (IETS) shows anomalies related to phonons (symmetric structures below 100 meV) and asymmetric features above 200 meV. We explain the asymmetric features in IETS as due to generation of electron standing waves in one of the Fe electrodes. The noise power, though exhibiting a large variation, was observed to be roughly anti-correlated with the TMR. Surprisingly, for the largest junctions we observed a strong enhancement of the normalized low-frequency noise in the antiparallel magnetic configuration. This behavior could be related to the influence of magnetostriction on the characteristics of the insulating barrier through changes in local barrier defects structure.  相似文献   

19.
The non-crystalline Pb(Zr, Ti)O3 thin films sputtered on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates at room temperature were crystallized by conventional furnace annealing (CFA) and rapid thermal annealing (RTA), respectively. It was found that the RTA process favored the (1 1 1)-preferred orientation in lead zirconate titanate (PZT) thin films while the CFA process favored the (1 0 0)-preferred orientation. The origin of the different orientation selection might be due to the different epitaxial nucleation mechanism. The long heating duration would lead to the aggregation of Pb and the formation of PbO(1 0 0) on film surface; therefore, the nucleation at the PbO(1 0 0)/PZT interface on film surface might lead to the (1 0 0)-preferred orientation. However, the nucleation at the PZT/Pt(1 1 1) electrode interface by RTA process would result in the formation of (1 1 1)-preferred orientation. The RTA-derived (1 1 1)-preferentially oriented PZT thin films exhibited a high remnant polarization of 35 μC/cm2.  相似文献   

20.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号