首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Hard amorphous carbon silicon nitride thin films have been grown by pulsed laser deposition (PLD) of various carbon silicon nitride targets by using an additional nitrogen RF plasma source on [100] oriented silicon substrates at room temperature. The influence of the number of laser shots per target site on the growth rate and film surface morphology was studied. Up to about 30 at. % nitrogen and up to 20 at. % silicon were found in the films by Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS). The XPS of the films showed a clear correlation of binding energy to the variation of PLD parameters. The films show a universal hardness value up to 23 GPa (reference value for silicon substrate 14 GPa) in dependence on target composition and PLD parameters. The results emphasise the possibility of variation of chemical bonding and corresponding properties, such as nanohardness, of amorphous CSixNy thin films by the plasma-assisted PLD process.  相似文献   

2.
The detailed surface chemistry of aluminum oxide protected silver films for use specifically in surface enhanced Raman spectroscopy and tip enhanced Raman spectroscopy (TERS) was investigated. We have demonstrated that increased storage and scanning use lifetimes for silver plasmonic structures are directly connected with the elimination of chemical degradation at the plasmonic structure surface. X‐ray photoelectron spectroscopy of the metal films confirmed that a 2–3 nm thick coating of aluminum oxide prevented chemical attack of the underlying silver film for three months of storage in a desiccator, significantly increasing the storage lifetime of current probes. The scanning lifetime of a TERS probe when used to image a hard patterned silicon substrate was doubled with the addition of this protective coating. These measurements were performed without laser illumination in order to separate laser‐induced heating degradation from pure mechanical degradation of the metallized probe currently encountered during TERS data collection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Gallium nitride thin films were grown on silicon carbide (0001) by plasma‐assisted molecular beam epitaxy (PAMBE). The samples were cooled down in nitrogen plasma and characterized in situ by reflection high energy electron diffraction (RHEED), photoelectron spectroscopy (XPS/UPS), and atomic force microscopy (AFM) revealing stoichiometric and smooth GaN films virtually free of contaminations. We present valence band data obtained by UPS with strong emission from surface states inside the fundamental band gap. These states and the observed 2 × 2 surface reconstruction are highly sensitive towards residual molecules. Once these surface states have disappeared the original state could not be recovered by surface preparation methods underlining the necessity of in situ investigations on as‐grown surfaces. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A superior, easy and single-step titanium (Ti) powder assisted surface pretreatment process is demonstrated to enhance the diamond nucleation density of ultrananocrystalline diamond (UNCD) films. It is suggested that the Ti fragments attach to silicon (Si) surface form bond with carbon at a faster rate and therefore facilitates the diamond nucleation. The formation of smaller diamond clusters with higher nucleation density on Ti mixed nanodiamond powder pretreated Si substrate is found to be the main reason for smooth UNCD film surface in comparison to the conventional surface pretreatment by only nanodiamond powder ultrasonic process. The X-ray photoelectron spectroscopic study ascertains the absence of SiC on the Si surface, which suggests that the pits, defects and Ti fragments on the Si surface are the nucleation centers to diamond crystal formation. The glancing-incidence X-ray diffraction measurements from 100 nm thick UNCD films evidently show reflections from diamond crystal planes, suggesting it to be an alternative powerful technique to identify diamond phase of UNCD thin films in the absence of ultra-violet Raman spectroscopy, near-edge X-ray absorption fine structure and transmission electron microscopy techniques.  相似文献   

5.
The surfaces of tin-doped indium oxide (ITO) thin films for polymer light-emitting electrochemical cells (LECs) were modified by oxygen plasma discharge. The properties of the ITO surfaces were evaluated by means of the measurements of X-ray photoelectron spectroscopy (XPS), contact angle, surface free energy and polarity. The influence of surface properties of the ITO thin films on the performance of polymer LECs was investigated in terms of the turn-on voltage, injection current and luminance. When oxygen plasma discharge was employed to modify the ITO surfaces, the surface properties of ITO are optimized due to the improvement of surface stoichiometry and the enhancement of wettability. And the improved surface properties benefited from the oxygen plasma discharge is observed to decay with the time after the plasma discharge. The difference in chemical composition, surface free energy and polarity between the non-treated and treated ITO surfaces appears to become smaller with the increase of the time after plasma discharge. In addition, the electrical and optical performance of the devices is found to become worse with the increasing time after plasma discharge on ITO substrates. The results demonstrate that the device performance strongly depends on the ITO surface properties and the ITO/organic interface characteristics.  相似文献   

6.
We examined the surface properties of platinum (Pt) thin films exposed to oxygen and argon plasma treatments and compared them to as-deposited Pt films. The surface wetting properties, refractive index and extinction coefficient of the Pt films were monitored as a function of time after different plasma treatments. Surfaces treated with an oxygen plasma were dramatically different from as-deposited Pt, whereas argon plasma treated surfaces were similar to as-deposited films. X-ray photoelectron spectroscopy confirmed the formation of platinum oxide on films treated with an oxygen plasma, while such oxide diminished after argon plasma treatment. Surface morphology studied with atomic force microscopy indicated a strong dependence of the surface roughness of the Pt films on the power and duration of the argon plasma used for the treatment. Based on these studies, an oxygen plasma treatment followed by a brief low-power argon plasma etch was developed for the purpose of regenerating clean and metallic Pt surfaces, and at the same time providing the smoothest possible surface morphology.  相似文献   

7.
《Solid State Ionics》2006,177(35-36):3123-3127
The Fermi level position at surfaces of tin-doped indium oxide (ITO) thin films has been recorded during oxygen exposure using high-pressure photoelectron spectroscopy at the BESSY storage ring. The rate of Fermi level shifts varies considerably depending on the surface electron concentration, which is determined by the Fermi level position with respect to the energy of surface states.  相似文献   

8.
立方氮化硼薄膜的生长特性与粘附性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
用X射线衍射技术、红外吸收光谱、扫描电子显微镜、X射线光电子能谱对热丝辅助射频等离子体化学汽相沉积法制备的立方氮化硼(c-BN)薄膜的生长特性和粘附性进行了研究.改变生长条件,在Si、不锈钢和Ni衬底上沉积c-BN薄膜,进而研究了c-BN薄膜的质量和生长条件与衬底之间的关系.实验发现,Ni衬底上生长的薄膜c-BN含量较高,且粘附性好.当Si衬底上溅射一层Ni过渡层,再生长c-BN薄膜,薄膜中c-BN含量提高,与Si衬底的粘附性也显著增强. 关键词:  相似文献   

9.
Preferentially, c-axis-oriented lithium-doped zinc oxide (ZnO:Li) thin films were prepared on Pyrex borosilicate glass substrates by a sol–gel method starting from zinc acetate dihydrate, lithium chloride, 2-methoxyethanol and monoethanolamine. Decomposition and crystallization behavior of dip-coated amorphous precursor films during post-annealing treatments were investigated by thermogravimetry–differential thermal analysis (TG–DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance measurements, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). It was revealed that the films contained the organic compounds at temperatures up to 300°C, which was the key to the transformation from the amorphous to the crystalline state. Thermodynamical consideration of nucleation and crystal growth was made taking account of surface energies of the film and the glass substrate and an interfacial energy between them. Mechanisms underlying the c-axis orientation were proposed based upon the initial orientation due to nucleation and final growth orientation.  相似文献   

10.
Aluminium nitride thin films were deposited on n-Si <100> substrates by RF plasma activated reactive pulsed laser deposition (PLD). An ArF excimer pulsed laser, 10 Hz and 2.5 J/cm2 energy fluence, has been used to ablate a pure Al target in a reactive atmosphere of N2 plasma (generated by a RF source), at varying processing parameters (substrate temperature, time, and N2 plasma configuration). We studied the dependence and correlation of structural and electronic properties with the experimental conditions. The chemical composition of deposited material has been determined by both Raman and X-ray photoelectron spectroscopy (XPS). Electrical resistivity has been evaluated by the sheet resistance method. Both spectroscopic characterizations (Raman and XPS) show a strong dependence in the formation of AlN on the deposition temperature. At low temperatures, there is little formation of nitride, with a prevalence of aluminium oxide, while at higher temperatures the N uptake increases, with AlN formation. Raman analysis also highlights the formation of nano-structures, for temperatures ≥400°C. These material characteristics have a fundamental influence on the electronic properties. Indeed, electrical resistivity properties have been found to be strongly dependent on the film structure, nitrogen incorporation, and presence of mixed oxide compounds, closely related to deposition temperature.  相似文献   

11.
许旻  贺德衍 《光学学报》2004,24(6):43-746
V2O5薄膜具有很好的离子注入/退出可逆性,是最有潜力的锂离子储存层的候选材料之一,它的电学特性与制备方法、化学计量比、结构和取向等有直接关系,仔细控制工艺参量是制备出在锂电池上应用的V2O5薄膜关键。研究中采用脉冲磁控反应溅射方法,通过精确地控制氧分压、基底温度等关键工艺参量,在石英玻璃和硅片上制备V2O5薄膜。利用X射线衍射和X射线光电子谱,分析了薄膜的成分、相结构、结晶和价态情况,用原子力显微镜表征了薄膜的微观结构,用分光光度计测量从200—2500nm波段V2O5薄膜纯度高、相结构单一、结晶度好。高低温电阻变化2个量级,薄膜的光学能隙为2.46eV。  相似文献   

12.
Fe3O4/MgO(100)薄膜的激光分子束外延与磁电学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
 采用激光分子束外延方法,以烧结α-Fe2O3/为靶材,在MgO(100)基底上制备了Fe3O4薄膜。通过反射高能电子衍射原位观察了薄膜生长前后的表面结构,结果表明所生长的Fe3O4薄膜表面平整。经显微激光拉曼光谱和X光电子能谱分析证实所得薄膜表面成分为纯相Fe3O4。磁电学性能采用多功能物性系统测量,结果表明:当温度降至100 K附近时,薄膜电阻率有较大增加,Verwey相转变的范围变宽而且不明显,说明反向晶粒边界的存在;在7 160 kA·m-1的磁场下,室温磁电阻达到-6.9%,在80和150 K温度下磁电阻分别达到-10.5%和-16.1%;薄膜的室温饱和磁化强度约为260 kA·m-1,其矫顽磁场约为202 kA·m-1。  相似文献   

13.
The new structural results revising commonly accepted point of view on role of products of silver chlorination in catalytic reaction of ethylene epoxidation are presented. It was established that AgCl nucleation on Ag(111) mainly occurs on step edges but low temperature reaction could also start on atomic terraces. On atomically resolved images of AgCl nuclei surface obtained with scanning tunneling microscope, the specific features of atomic size were observed and attributed to silver atoms and atomic clusters. We predict that such silver cluster formation could explain a very high activity of chlorinated surface in ethylene epoxidation. Interatomic distances measured in thin AgCl films were found to be equal to corresponding bulk parameters. The photoelectron diffraction patterns observed upon Ag(100) chlorination were explained by the formation of AgCl(111) domains rotated on 90° with respect to each other.  相似文献   

14.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

15.
The changes in the electronic structure and phase composition of porous silicon under action of pulsed ionic beams have been studied by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) using synchrotron radiation. The Si 2p and O 1s core photoemission spectra for different photoelectron collection angles, valence band photoemission spectra, and X-ray absorption near-edge fine structure spectrain the region of Si L 2,3 edges of the initial and irradiated samples have been analyzed. It has been found that, as a result of the irradiation, a thin oxide film consisting predominantly of higher oxide SiO2 is formed on the porous silicon surface, which increases the energy gap of the silicon oxide. Such film exhibits passivation properties preventing the degradation of the composition and properties of porous silicon in contact with the environment.  相似文献   

16.
A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films.Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.  相似文献   

17.
We present a core and valence region spectroscopic analysis of the interfacial electronic structure of thin films of vanadyl naphthalocyanine (VONc) deposited onto highly oriented pyrolytic graphite (HOPG). X-ray photoelectron spectroscopy indicates the predominantly ionic character of the vanadyl metal center coordinated by the heterocycle and affords the bandgap in the thin VONc films. Valence band photoelectron spectroscopy points to the existence of three different adsorption geometries of VONc on the HOPG surface. The distribution of the different geometries can be systematically influenced in a simple post-deposition processing step, with an immediate effect on the interfacial electronic environment. We find spectroscopic evidence in the valence levels that VONc grows on HOPG most likely in a 2D-gas fashion rather than by nucleation and growth of islands. These data allow us to predict accurately the interface dipole in the case of a broad class of dipolar organic semiconductors, based simply on molecular dipole moment, polarizability and molecular diameter. This ability provides an important step towards rational optimization of energy level alignment in organic electronics.  相似文献   

18.
The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices.  相似文献   

19.
姜礼华  曾祥斌  张笑 《物理学报》2012,61(1):16803-016803
采用等离子增强化学气相沉积法, 以氨气和硅烷为反应气体, p型单晶硅为衬底, 低温下(200 ℃)制备了非化学计量比氮化硅(SiNx)薄膜. 在N2氛围中, 于500–1100 ℃范围内对薄膜进行热退火处理. 室温下分别使用Fourier变换红外吸收(FTIR)光谱技术和X射线光电子能谱(XPS)技术测量未退火以及退火处理后SiNx薄膜的Si–N, Si–H, N–H键键合结构和Si 2p, N 1s电子结合能以及薄膜内N和Si原子含量比值R的变化. 详细讨论了不同温度退火处理下SiNx薄膜的FTIR和XPS光谱演化同薄膜内Si, N, H原子间键合方式变化之间的关系. 通过分析FTIR和XPS光谱发现退火温度低于800 ℃时, SiNx薄膜内Si–H和N–H键断裂后主要形成Si–N键; 当退火温度高于800 ℃时薄膜内Si–H和N–H键断裂利于N元素逸出和Si纳米粒子的形成; 当退火温度达到1100 ℃时N2与SiNx薄膜产生化学反应导致薄膜内N和Si原子含量比值R增加. 这些结果有助于控制高温下SiNx薄膜可能产生的化学反应和优化SiNx薄膜内的Si纳米粒子制备参数. 关键词: x薄膜')" href="#">SiNx薄膜 Fourier变换红外吸收光谱 X射线光电子能谱 键合结构  相似文献   

20.
Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号