首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tunneling electrons from a scanning tunneling microscope were used to excite light emission from individual multiwalled carbon nanotubes adsorbed on a highly ordered pyrolytic graphite surface. In the integral photon-intensity map, spatially uniform emission in the visible region was observed along the identical multiwalled carbon nanotubes. The emission spectra for the individual nanotubes showed unique profiles which differed with each nanotube, and were classified into two types. Our results indicate that the light emission is due to not the localized electronic states at the tube ends or defects but radiative transitions of electrons between the one-dimensional van Hove singularities, indicating that the two types of spectra are attributed to metallic and semiconducting nanotubes.  相似文献   

2.
Experimental results of studying the electronic structure of single-walled and multi-walled carbon nanotubes as well as graphite by X-ray absorption spectroscopy (or NEXAFS spectroscopy) are presented. The C1s absorption spectra are measured with high energy resolution using the equipment of the Russian-German beamline of the BESSY electron storage ring. Features found in absorption spectra of carbon nanotubes and graphite for the first time are interpreted in the case of carbon nanotubes as the contribution of electron states appearing due to the imperfection of their structure both under the nonequilibrium synthesis conditions and during the subsequent producing manipulations.  相似文献   

3.
填充碳纳米管/石墨的复合型电磁波屏蔽膜   总被引:11,自引:0,他引:11  
介绍一种填充碳纳米管/石墨的复合型电磁波屏蔽膜的组成、制备及其对耐老化性能,实验发现:当碳纳米管/石墨的配比为1/7-1/2、有机聚合物/导电填料的配比为29.6/70.4-32.4/67.6时,该屏蔽具有最佳的电性能、屏蔽性能和加工性能,且在一定条件下具有负的温度系数。用多层结构模型讨论了该屏蔽膜的导电性,并与铜、镍、危险性膜的屏蔽特性进行了比较。  相似文献   

4.
Layers of oriented carbon nanotubes and nanometer-size plate-shaped graphite crystallites are obtained by chemical vapor deposition in a glow-discharge plasma. A structural-morphological investigation of a carbon material consisting of nanotubes and nanocrystallites is performed, and the field-emission properties of the material are also investigated. It is shown that electron field emission is observed in an electric field with average intensity equal to or greater than 1.5 V/μm. The low fields giving rise to electron emission can be explained by a decrease in the electronic work function as a result of the curvature of the atomic layers of graphitic carbon. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 5, 381–386 (10 March 1999)  相似文献   

5.
Surface termination and electronic properties of InN layers grown by high pressure chemical vapor deposition have been studied by high resolution electron energy loss spectroscopy (HREELS). HREEL spectra from InN after atomic hydrogen cleaning show N-H termination with no indium overlayer or droplets and indicate that the layer is N-polar. Broad conduction band plasmon excitations are observed centered at 3400 cm−1 in HREEL spectra with 7 eV incident electron energy which shift to 3100 cm−1 when the incident electron energies are 25 eV or greater. The shift of the plasmon excitations to lower energy when electrons with larger penetration depths are used is due to a higher charge density on the surface compared with the bulk, that is, a surface electron accumulation. These results indicate that surface electron accumulation on InN does not require excess indium or In-In bonds.  相似文献   

6.
We report on the interaction of hydrogen with sp2-bonded carbon which has been investigated on graphite (0001), single-walled carbon nanotubes and C60 multilayer films. These substrates have been chosen to represent a large range of curvature in the carbon network. The photoelectron spectroscopy study of the samples treated with atomic hydrogen and low-energy hydrogen ions reveals that hydrogen is chemisorbed on the basal plane of the sp2-bonded carbon networks, as evidenced by the lowered emission from -derived states and a lowering of the electron work function of up to 1.3 eV. The hydrogen adsorption energy barrier is found to strongly depend on the local curvature of the carbon network whereby the barrier is lowered with increasing curvatures. Whereas in the case of C60 and single-walled carbon nanotubes, hydrogen chemisorption can be achieved by exposure to atomic hydrogen, the chemisorption on graphite (0001) requires hydrogen ions of low kinetic energy (1 eV). Furthermore, the adsorption energy barrier is found to increase with hydrogen coverage.The scanning tunnelling microscopy study of individual adsorption sites on the graphite (0001) surface reveals long-ranged (5 nm) electronic effects observed as a (sqrt(3)×sqrt(3))R30° superstructure in the local density of states. It is shown that this superstructure is due to the scattering of delocalized electron wavefunctions at the point defects. The resulting standing waves induce a redistribution of the local density of states which is directly related to the point-like Fermi surface of graphite. PACS 68.43.-h; 71.20.Tx; 68.37.Ef  相似文献   

7.
The one-dimensional structure of carbon nanotubes leads to quantum confinement of the wave vectors for the electronic states, thus making the double resonance Raman process selective, not only of the magnitude, but also of the direction of the phonon wave vectors. This additional selectivity allows us to reconstruct the phonon dispersion relations of 2D graphite, by probing individual single wall carbon nanotubes of different chiralities by resonance Raman spectroscopy, and using different laser excitation energies. In particular, we are able to measure the anisotropy, or the trigonal warping effect, in the phonon dispersion relations around the hexagonal corner of the Brillouin zone of graphite.  相似文献   

8.
The C 1s and F 1s x-ray absorption spectra of fluorinated multiwalled carbon nanotubes with different fluorine contents and reference compounds (highly oriented pyrolytic graphite crystals and “white” graphite fluoride) were measured using the equipment of the Russian-German beamline at the BESSY II storage ring with a high energy resolution. The spectra obtained were analyzed with the aim of characterizing multiwalled carbon nanotubes and their products formed upon treatment of the nanotubes with fluorine at a temperature of 420°C. It was established that, within the probing depth (~15 nm) of carbon nanotubes, the process of fluorination occurs uniformly and does not depend on the fluorine concentration. The interaction of fluorine atoms with multiwalled carbon nanotubes in this case proceeds through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton and is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp 2) to tetrahedral (sp 3) hybridization.  相似文献   

9.
Multi‐wall carbon nanotubes (MWCNTs) produced by the arc discharge between two graphite rods in liquid nitrogen have been investigated with the use of Raman spectroscopy and transmission electron microscopy (TEM). The effects of the applied voltage on the structural properties of the produced MWCNTs have been observed, in particular, as it concerns the size of the innermost and outermost diameters. The apparent discrepancies observed between the Raman and TEM results are explained through the observation of a selective response of the MWCNTs to the excitation laser energy in Raman spectroscopy, similar to the case of single‐wall CNTs. Electronic structure calculations correlate such behavior with optical transitions, in the presence of strong electronic localizations, spatially confined in a few neighboring walls. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We have measured a strictly linear pi plasmon dispersion along the axis of individualized single-wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single-wall carbon nanotubes. Comparative ab initio studies on graphene-based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects cause a mixing of electronic transitions, including the "Dirac cone," resulting in the observed linear dispersion.  相似文献   

11.
The dynamics of solitary plane waves in graphite layers and supersonic acoustic solitons in an ideal single-layer carbon nanotube are numerically studied. It is shown that stable solitary waves exist only in flat graphite layers. In nanotubes, only soliton-like excitations can exist and their supersonic motion is always accompanied by phonon emission. The lifetime of such excitations depends on their energy and on the nanotube radius.  相似文献   

12.
We have investigated various electronic band structures for different graphite modifications using the extended tight binding method. The specific crystal structures studied are the two naturally occurring graphite modifications (Bernal and rhombohedral), and a hypothetical configuration where the carbon atoms in consecutive layers are directly above each other. The latter structure has not been observed in pure graphite, but it is the backbone structure for different stages of intercalated graphite, e.g. Li-graphite compounds LiCn. On comparing band structures for various graphite modifications we find important differences in the π-bands close to the Fermi energy, the region dominating transport and low energy excitation properties.  相似文献   

13.
A review of the electronic dipole transitions in graphite and single-wall carbon nanotubes is presented. Because of its singular electronic structure, the optical absorption matrix element as a function of wave vector has a node in the two-dimensional Brillouin zone of graphite, which depends linearly on the optical polarization direction. In the case of the single-wall carbon nanotubes, the dipole selection rule and the van Hove singularity in the joint density of states will give a characteristic behavior, which is observed by luminescence and resonance Raman spectroscopy. PACS 78.30.Na; 78.20.Bh; 78.66.Tr; 63.22.+m; 36.20.Kd; 36.20.Ng  相似文献   

14.
CVD polycrystalline diamond film, pulse laser-deposited (PLD) carbon film and highly oriented pirolitical graphite (HOPG) as reference, were modified by means of Ar+ ion bombardment and characterized by means of Raman scattering, transmission electron microscopy, electron-diffraction (TEM), reflected electron energy loss specroscopy (REELS) and X-ray photoelectron spectroscopy (XPS) techniques. It was found that the diamond was transferred to a carbon with halo-like morphology and disordered stack of graphene segments. Instead of the well-known electron energy loss peak of graphite at 6.5 eV, a new REELS peak appeared at 4-5 eV energies. The observed effect was explained by the modification of π-system in carbon films as a consequence of the formation of non-planar, nanometer-sized graphitic planes.  相似文献   

15.
This Letter reports the laser energy dependence of the Stokes and anti-Stokes Raman spectra of carbon nanotubes dispersed in aqueous solution and within solid bundles, in the energy range 1.52-2.71 eV. The electronic transition energies (E(ii)) and the radial breathing mode frequencies (omega(RBM)) are obtained for 46 different (18 metallic and 28 semiconducting) nanotubes, and the (n,m) assignment is discussed based on the observation of geometrical patterns for E(ii) versus omega(RBM) graphs. Only the low energy component of the E(M)(11) value is observed from each metallic nanotube. For a given nanotube, the resonant window is broadened and down-shifted for single wall carbon nanotube (SWNT) bundles compared to SWNTs in solution, while by increasing the temperature, the E(S)(22) energies are redshifted for S1 [(2n+m) mod 3=1] nanotubes and blueshifted for S2 [(2n+m) mod 3=2] nanotubes.  相似文献   

16.
We report total-energy electronic-structure calculations that provide energetics and electronic structures of double-walled carbon nanotubes consisting of semiconducting (n,0) nanotubes. We find that optimum spacing between the walls of the nanotubes is slightly larger than the interlayer spacing of the graphite. We also find that the electronic structures of the double-walled nanotubes with the inner (7,0) nanotube are metallic with multicarrier characters in which electrons and holes exist on inner and outer nanotubes, respectively. Interwall spacing and curvature difference are found to be essential for the electron states around the Fermi level.  相似文献   

17.
It is demonstrated that the CK α x-ray fluorescence spectra of carbon nanotubes synthesized by electric-arc evaporation of graphite and the spectra of carbon nanotubes produced using catalytic decomposition of hydrocarbons differ in the intensity of the short-wavelength lines. In order to interpret the obtained data, the electronic structures of perfect and defect-containing nanotubes are calculated in the framework of the tight-binding method with optimized parameters. The density of localized states that correspond to the observed increase in the intensity of the fluorescence spectrum of catalytic nanotubes can be obtained in the case when 15–20% of the total number of carbon atoms are absent in the carbon network. It is shown that defects of this type can bring about a decrease in the band gap of the nanotubes.  相似文献   

18.
19.
Encapsulation of fullerene into nanotubes based on a C2N sheet, known as nitrogenated holey graphene, was investigated using density functional theory. The structural and electronic properties of these carbon hybrid materials, consisting of nitrogenated holey nanotubes and a small C20 fullerene, were studied. The formation energies showed that encapsulation of the fullerene into the nitrogenated holey nanotube is an exothermic process. To characterise the electronic properties, the electronic band structure and density of states of armchair and zigzag nitrogenated holey nanotubes were calculated. Filling these nanotubes with the C20 fullerene resulted in a p-type semiconducting character. The energy band gap of the nitrogenated holey nanotubes decreased with fullerene encapsulation. The results are indicative of the possibility of band gap engineering by encapsulation of small fullerenes into nitrogenated holey nanotubes.  相似文献   

20.
The local density of states (LDOS) near point defects on a surface of highly oriented pyrolytic graphite (HOPG) was studied at very low temperatures in magnetic fields up to 6 T. We observed localized electronic states over a distance of the magnetic length around the defects in differential tunnel conductance images at the valley energies of the Landau levels (LLs) as well as relatively extended states at the peak ones of LLs. These states appear mainly at energies above the Fermi energy corresponding to the electron LL bands. The data suggest that the quantum Hall state is realized in the quasi two dimensional electron system in HOPG. At the peak energy associated with the n=0 (electron) and -1 (hole) LLs characteristic of the graphite structure, a reduced LDOS around the defects is observed. The spatial distribution is almost field independent, which indicates that it represents the potential shape produced by the defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号