首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adsorbate induced modifications of the surface lattice dynamics are of particular interest with respect to surface reconstruction and relaxation. We report on a theoretical attempt of disclosing the microscopic mechanism of an adsorbate driven change of the surface geometry in the early stages of adsorption. The theoretical framework is the deformation resonance approach (DRA), which has been developed for the investigation of inelastic gas - surface interactions. The adsorbate - phonon interaction is of short range and therefore treated in a localized basis set. The local deformation of the surface in the environment of the adsorbed particle is calculated self-consistently using quantum mechanics. Qualitative aspects of the correlated adsorbate - substrate motion are discussed paying special attention to the possibility of adsorbate induced soft phonon modes.The method is applied to studying the interaction of a hydrogen atom with the nickel (110) - surface. The three-dimensional static potential energy surface including the first and second derivatives with respect to the substrate atom displacements has been evaluated using a sophisticated electronic model Hamiltonian. Many - body forces lead to a modification of the coupling between substrate atoms as compared to the clean surface. The metal atoms relax from their original equilibrium positions in order to minimize the total ground state energy of the interacting system. This behaviour is discussed as a possible driving force for the hydrogen induced reconstruction.  相似文献   

2.
We use density functional theory (DFT) with the generalized gradient approximation (GGA) and the revised Perdew-Burke-Ernzerhoff (rPBE) functional, to study the surface composition of the (1 1 1) and (1 0 0) dilute Pd/Au alloy. We find that the energy of Pd atoms is lower when they substitute an Au atom in the bulk than when they substitute an Au atom in the surface layer, or when they are adsorbed on the surface. Whether they are in the surface layer or in the bulk, the Pd atoms interact very weakly with each other. CO adsorbs on the Pd atom in the surface layer and the energy of this complex is lower than that of CO in gas and Pd atom in the bulk. The interaction between the PdCO complexes formed when CO adsorbs on a Pd atom imbedded in the surface layer, is also negligible. We use these energies, equilibrium thermodynamics, and a simple lattice-gas model to examine the equilibrium composition of the surface layer, as a function of temperature, CO pressure and the Pd/Au ratio. We find that the surface Pd concentration for a nanoparticle of an Au/Pd alloy differs from that in a bulk sample. The difference is due mainly to the fact that in a nanoparticle the migration of Pd atoms to the surface depletes the bulk concentration while in a large sample; the bulk provides an infinite source of Pd atoms to populate the surface sites. This system is of interest because Pd/Au alloys are selective catalysts for vinyl acetate synthesis when the Pd concentration on the surface is very low.  相似文献   

3.
The chemisorption of hydrogen onto semiconductor surfaces is examined. The hydrogen bonds to the dangling bond of a surface atom. These dangling bonds also dictate the reconstruction of the crystal surface. The chemisorbed hydrogen therefore modifies the reconstructed surface topology. In this work theoretical calculations of the surface structures of both covalent elemental silicon and polar silicon carbide are presented. The periodic MINDO method is employed to determine the topologies for the 2 × 1 reconstructed (1 0 0) surfaces. These topologies are obtained from the minimisation of the total energy, for silicon and silicon carbide films of 14 layer thickness, with respect to the atomic co-ordinates of the hydrogen adsorbate and the first four layers of the substrate. The results show that the formation of the hydrogen bond to the substrate leads to a general lengthening of the surface dimer bond. In addition, the buckling of the silicon dimer determined for silicon terminated SiC is removed by hydrogen chemisorption.  相似文献   

4.
First-principles calculations have been performed to investigate the adsorption of oxygen on unreconstructed and reconstructed Ni(1 1 0) surfaces. The energetics, structural, electronic and magnetic properties are given in detail. For oxygen adsorption on unreconstructed surface, (n×1)(n=2,3) substrate with oxygen atom on short-bridge site is found to be the most stable adsorption configuration. Whereas energetically most favorable adsorption phase of reconstructed surface is p(n×1) substrate with oxygen atom located at long-bridge site. Our calculations suggest that the surface reconstruction is induced by the oxygen adsorption. We also find there are redistributions of electronic structure and electron transfer from the substrate to adsorbate. Our calculations also indicate surface magnetic moment is enhanced on clean surfaces and oxygen atoms are magnetized weakly after oxygen adsorption. Interestingly, adsorption on unreconstructed surface does not change surface magnetic moment. However, adsorbate leads to reduction of surface magnetic moment in reconstructed system remarkably.  相似文献   

5.
Surface X-ray diffraction has been used to investigate the structure of TiO2(1 1 0)(3 × 1)-S. In concert with existing STM and photoemission data it is shown that on formation of a (3 × 1)-S overlayer, sulphur adsorbs in a position bridging 6-fold titanium atoms, and all bridging oxygens are lost. Sulphur adsorption gives rise to significant restructuring of the substrate, detected as deep as the fourth layer of the selvedge. The replacement of a bridging oxygen atom with sulphur gives rise to a significant motion of 6-fold co-ordinated titanium atoms away from the adsorbate, along with a concomitant rumpling of the second substrate layer.  相似文献   

6.
《Surface science》1994,304(3):L481-L487
A tensor LEED analysis has been made for the Rh(110)-c(2 × 2)-S surface structure using intensity-versus-energy curves measured for twelve independent beams at normal incidence. Each S atom chemisorbs on a centre site of the Rh(110) surface. It bonds to the second layer Rh atom directly below, with a bond distance equal to about 2.27 Å, and to four neighbouring first layer Rh atoms at close to 2.47 Å. A significant feature of this structure is that the second metal layer is buckled; those Rh atoms directly below the S atoms relax down by about 0.11 Å compared with the other second layer Rh atoms. This buckling is apparently driven by the need to reduce the difference that would otherwise occur between these two types of S-Rh bond lengths. A component in the observed difference between the S-Rh distances appears to be dependent on the metallic coordination number for the Rh atoms; in this regard, a comparison is made with the structural details for O chemisorbed on reconstructed Ni(110).  相似文献   

7.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

8.
钱泽宇  张林 《物理学报》2015,64(24):243103-243103
采用基于嵌入原子方法的分子动力学方法模拟了附着于TiAl合金(001)面的TiAl合金纳米粒子在不同温度下的原子堆积结构演变. 在模拟中, 熔融态(1500 K)的纳米粒子先被放置在温度分别为1100, 1000, 900, …, 200和100 K的基体(001)面, 随后急冷降温至基体温度. 通过逐层分析粒子内和基体表面的原子排列情况, 发现温度主要影响粒子内的原子堆积结构. 当基体温度很高时, 粒子内除了靠近基体的几个原子层外, 其他区域内均未形成有序的原子堆积结构. 随基体温度降低, 粒子内大部分原子逐渐形成了有序的原子堆积结构, 且粒子内出现了一个以基体(001)晶面为底面、以基体[101], [101], [011], [011]晶向为轴的近四棱锥形内区域, 此区域内外的原子均呈有序排列, 但原子面的取向不同, 因而形成了明显的界面. 随基体温度进一步降低, 这个内区域仍然存在但其体积不断减小, 同时在纳米粒子顶部有越来越多的原子再次呈现无序排列, 使此内区域愈加难以辨别.  相似文献   

9.
Density functional theory is used to study the effect of atomic oxygen adsorption at various coverages with and without the presence of water on ordered and Pt-segregated PtCo surfaces. The strength of O adsorption, as well as surface reconstruction effects due to the adsorbate are strongly influenced by the presence of the oxygen-philic transition metal on the surface or subsurface. At high O coverage, buckling of the Co atom on PtCo surfaces is much smaller than that of Pt on Pt(1 1 1) surfaces, and buckling of Pt atoms on Pt-skin surfaces is negligible. Also, the effect of an electric field perpendicular to the surface on adsorbed water and atomic oxygen is investigated. Spontaneous water dissociation is not found on the ordered and segregated alloy surfaces within the entire applied electric field range (−0.51 to 0.51 V/Å). Water changes orientation under strong negative fields, switching from a metal–O to a metal–H interaction, and the effect is much more pronounced in the low-coordination sites of cluster models.  相似文献   

10.
A theoretical study of the electron dynamics in image potential states on Cu(1 0 0) surfaces with different types of adsorbates is presented. Scattering of the image state electron by an adsorbate induces inter-band and intra-band transitions leading respectively to the population decay and to the dephasing of the image state. We compare results obtained with low coverage (typically 1 adsorbate atom per 1000 surface atoms) Cs, Ar, and a model electronegative adsorbates. As follows from our results, Cs adsorbates lead to both appreciable dephasing and decay, while electronegative adsorbates mostly affect the dephasing rate. The effect of low coverage Ar adsorbates is small, consistent with their neutrality.  相似文献   

11.
The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.  相似文献   

12.
A model system representing a collisional Li atom interacting in the “on top” geometry with an Al surface partly covered with Li adsorbates is studied. The cases of a unique adsorbate and of a uniform adsorbate layer are considered and compared. The energies and widths of the atom levels are much modified in the vicinity of the adsorbate. This is interpreted in terms of molecularisation of the atomic and adsorbate levels. These results also determine the relative importance of the local and non-local effects of the adsorbates on the resonant charge transfer process in atom-surface collisions.  相似文献   

13.
The adsorption properties of sodium-chloride monolayers and bilayers on the flat (1 0 0) surface and the stepped (3 1 1) surface of copper have been investigated using density functional calculations. We have identified both electrostatic and covalent contributions to the bonding between the overlayers and the substrate. The larger corrugation of the electrostatic potential on the stepped surface than on the flat surface makes the adsorption stronger on the stepped surface than on the flat surface and favours the adsorption of the chlorine atom on top of a copper atom in the steps of the stepped surface. A further stabilisation of this bonding geometry is obtained from the formation of weak covalent bond between these two atoms. A simple “image charge” model for the bonding is found to break down in this case. The large geometric buckling of the monolayer on the stepped surface is predicted to give rise to a large difference between the work functions of the monolayer and the bilayer.  相似文献   

14.
李登峰  肖海燕  祖小涛  董会宁  高飞 《中国物理 B》2010,19(8):87102-087102
Using first-principles total energy method, we study the structural, the electronic and the magnetic properties of the MnNi(110) c(2×2) surface alloy. Paramagnetic, ferromagnetic, and antiferromagnetic surfaces in the top layer and the second layer are considered. It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases. The buckling of the Mn–Ni(110) c(2×2) surface alloy in the top layer is as large as 0.26á(1á=0.1 n13) and the weak rippling is 0.038 AA in the third layer, in excellent agreement with experimental results. It is proved that the magnetism of Mn can stabilize this surface alloy. Electronic structures show a large magnetic splitting for the Mn atom, which is slightly higher than that of Mn–Ni(100) c(2×2) surface alloy (3.41 eV) due to the higher magnetic moment. A large magnetic moment for the Mn atom is predicted to be 3.81 μB. We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate, which confirms the experimental results. The magnetism of Mn is identified as the driving force of the large buckling and the work-function change. The comparison with the other magnetic surface alloys is also presented and some trends are predicted.  相似文献   

15.
3He spin-echo measurements are used to follow the picosecond motion of sodium atoms on a copper (001) substrate. 2D correlated motion arising from repulsive adsorbate interactions is observed for coverages as low as 0.04 ML. At coverages greater than 0.05 ML there is a pronounced onset of motion perpendicular to the surface. The perpendicular motion is thermally activated and seems related to the basic translational hopping diffusion process. The correlated motion is modeled successfully using a molecular dynamics simulation and a dipolelike lateral interaction. A simple model which relates the apparent height of the atom with its local coverage is shown to reproduce the experimental observations.  相似文献   

16.
A C-terminated structure on Mo2C(0001) was observed by scanning tunneling microscopy. The structure was observed as a honeycomb structure with dark depressions corresponding to C atoms which make up the lattice. High resolution imaging was possible at low tunneling resistance less than 1 MΩ. Each C atom appears as a shallow sombrero protrusion predicted by theoretical calculations of C atoms on a metal substrates. It is concluded that the C atoms occupied threefold hollow sites of the (1×1) Mo layer of the substrate and a model for the structure is proposed.  相似文献   

17.
贺艳斌  贾建峰  武海顺 《物理学报》2015,64(20):203101-203101
采用基于色散校正的密度泛函理论进行了第一性原理研究, 详细分析了肼(N2H4)在Ni8Fe8/Ni(111)合金表面稳定吸附构型的吸附稳定性和电子结构及成键性质. 通过比较发现, 肼分子以桥接方式吸附在表面的两个Fe原子上是最稳定的吸附构型, 其吸附能为-1.578 eV/N2H4. 同时发现, 肼分子在这一表面上吸附稳定性的趋势为: 桥位比顶位吸附更有利, 且在Fe原子上比在Ni原子上的吸附作用更强. 进一步分析了不同吸附位点上稳定吸附构型的电子结构、电荷密度转移以及电子局域化情况. 结果发现: 相同吸附位点的电子态密度图基本一致, 并且N原子的p轨道和与之相互作用的表面原子的d轨道之间存在态密度上的重叠; 吸附后电荷密度则主要从肼分子转移到表面原子之上; 在电子局域化函数切面图中也发现吸附后电子被局域到肼分子的N原子和相邻的表面原子之间. 这些电子结构的表征都充分说明肼分子与表面原子之间通过电荷转移形成了强烈的配位共价作用.  相似文献   

18.
《Surface science》1997,375(1):L367-L374
A theoretical study of Li+ neutralization by collision on an alkali covered Al surface is presented. The neutralization probability is computed for Li atoms back scattered from Al sites and from alkali sites on the surface. The calculations are performed with a model representation using lithium as a representative for alkali adsorption. The results reproduce the very large difference in neutralization probability for Li scattered from substrate and adsorbate sites experimentally observed by Weare and Yarmoff [Surf. Sci. 348 (1996) 359] and thus confirm the importance of local effects in atom-surface charge transfer. For scattering from adsorbate sites, the neutralization is shown to be associated with a very large excitation probability of the scattered Li atom.  相似文献   

19.
A tensor LEED analysis is reported for the Rh(111)-(2 × 1)---O surface structure in which atoms in the O overlayer chemisorb close to the regular (fcc type) three-fold hollow sites for half-monolayer coverage. The structure shows significant relaxations: for example, a buckling of about 0.07 Å is indicated in the first metal layer and O appears to displace laterally by about 0.05 Å. The individual O---Rh bond lengths are around 2.01 and 1.92 Å to top layer Rh atoms, which bond to two and one O atoms, respectively, but the average value (1.98 Å) is close to that in bulk RhO2 (1.96 Å). Comparison is also made with the previously determined O---Rh bond lengths in the Rh(110)-p2mg(2 × 1) surface structure.  相似文献   

20.
The binding energy of atom X (X = B, Al, Ga, In, N, P, As, Sb) substituting for carbon atoms in single-layer graphene, a buffer layer, and on the ( 000[`1] )\left( {000\bar 1} \right) surface of SiC substrate or for a silicon atom on the (0001) surface of SiC substrate has been studied by the Harrison bond-orbital method. In terms of a simple model based on atomic radii, the contribution of the strain energy due to relaxation of an impurity bond has been considered. The expressions have been obtained for the difference between the energies of substitution for a carbon atom in the buffer layer and in single-layer graphene and in the case of substitution for silicon and carbon atoms on the SiC-substrate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号