首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vicinal substrates of sapphire with miscut angle of 10° from the (0 0 1) planes towards the [1 1 0] direction have been annealed in air in the range from 1000 to 1500 °C. The behaviour of these surfaces has been characterized as a function of the temperature and the thermal treatment time by Atomic Force Microscopy observations. A thermal treatment at 1250 °C allows to stabilize a surface made of periodically spaced nanosized step-bunches. Such stepped surfaces were used as template to grow self-patterned epitaxial oxide nanoparticles by thermal annealing of yttria-stabilized zirconia thin films produced by sol-gel dip-coating. Grazing Incidence Small Angle X-ray Scattering and High-Resolution Transmission Electron Microscopy were used to study the morphology of the nanoparticles and their epitaxial relationships with the substrate.  相似文献   

2.
We present atomic force microscopy (AFM) measurements from a passivated silicon crystal miscut by 0.1° and show the etching regime to be significantly different from surfaces with a larger miscut angle. A simple kinetic model is developed to explain the results and is used to derive the optimal etching conditions for nominally flat Si(1 1 1)–(1×1)H. We show that small changes in miscut angle can alter the kinetic steady state and promote the formation of deep etch pits, even on the least stable, miscut surface. Collisions of steps with these pits result in arrays of stable, self-aligned ‘etch hillocks' over micron dimensions. Following preparation, we use AFM to observe the initial growth of native oxide on the Si(1 1 1)–(1×1)H surface, and demonstrate that AFM is a sensitive probe to surface oxidation in the sub-monolayer regime.  相似文献   

3.
Ni thin layer was deposited to assist to activate p-GaN and then was removed. The process was named Ni-assisted annealing (NA). We investigate the surface morphology and p-type contact behaviors of InGaN LED films grown on Si (1 1 1) substrates. Compared with conventional thermal annealing (TA), NA can improve the p-type contact characteristic at lower anneal temperature and a smaller specific contact resistivity (ρc = 6.1 × 10−5 Ω cm2) employing nonalloy Pt electrode was obtained. A wet etching method using acid-hydrogen peroxide was adopted to boil films surface after activation. We found that some nano-pits appeared on surfaces while original surface step structure was still clearly visible, which shows a defect-selective etching characteristic. Otherwise, we demonstrated that the surface morphology could be affected by NA while independent to TA. Some mechanisms for experimental phenomena were also discussed in the letter.  相似文献   

4.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

5.
Microstructure effect on chemical etching behavior of the annealed Ti-6Al-4V and Ti-3Al-2.5V titanium (Ti) alloys was compared with that of unalloyed commercially pure titanium. The microstructural evolution of structure phases after annealing the titanium and its alloys at temperature near and above β transus and followed by furnace cooling to room temperature was studied using optical microscope, scanning electron microscope and X-ray diffraction techniques. The microstructure study illustrates that the heat treatment enhanced partitioning effect allows extensive formation of hemispherical and near spherical pits roughened surface to be readily acquired by chemically etching the annealed α + β titanium alloys. The kinetics of the chemical etching reaction process show a linear dependence on time. The annealed α + β titanium alloys that exhibit relatively lower weight loss and thickness reduction rate illustrate less chemical activity than the annealed unalloyed titanium.  相似文献   

6.
Etching and chemical mechanical polishing (CMP) experiments of the MgO single crystal substrate with an artificial scratch on its surface are respectively performed with the developed polishing slurry mainly containing 2 vol.% phosphoric acid (H3PO4) and 10-20 nm colloidal silica particles, through observing the variations of the scratch topography on the substrate surface in experiments process, the mechanism and effect of removing scratch during etching and polishing are studied, some evaluating indexes for effect of removing scratch are presented. Finally, chemical mechanical polishing experiments of the MgO substrates after lapped are conducted by using different kinds of polishing pads, and influences of the polishing pad hardness on removal of the scratches on the MgO substrate surface are discussed.  相似文献   

7.
Magnesium oxide (MgO) single crystal is an important substrate for high temperature superconductor, ferroelectric and photoelectric applications. The function and reliability of these devices are directly affected by the quality of polished MgO surface because any defect on the substrate, such as pit or scratch, may be propagated onto device level. In this paper, chemical mechanical polishing (CMP) experiments were conducted on MgO (1 0 0) substrate using slurry mainly comprised of 1-hydroxy ethylidene-11-diphosphonic acid (HEDP) and silica or ceria particles. Through monitoring the variations of the pits topography on substrate surface, generation and removal mechanism of the pits were investigated. The experimental results indicate that the pits were first generated by an indentation or scratch caused by particles in the slurry. If the rate of chemical etching in the defect area is higher than the material removal rate, the pits will grow. If chemical reaction in the defect area is slower than the material removal rate, the pits will become smaller and eventually disappear. Consequently, these findings may provide insight into strategies for minimizing pits during CMP process.  相似文献   

8.
The half-metallic NiMnSb alloy was tested as a possible fully polarized electrode in a magnetic tunnel junction. For this purpose, epitaxial NiMnSb(0 0 1) and NiMnSb/MgO(0 0 1) systems were grown by molecular beam epitaxy. Spin-polarized photoemission experiments using the synchrotron radiation at the ESRF were performed on both the uncovered NiMnSb(0 0 1) surface and on the NiMnSb/MgO(0 0 1) interface. Starting from a NiMnSb(0 0 1) uncovered surface presenting at room temperature a 40% polarization at the Fermi level measured in the whole Brillouin zone, this polarization was observed to dramatically decrease when a MgO(0 0 1) epitaxial barrier was grown on top of it. On the other hand, the X-ray absorption experiments clearly show some oxidization of Mn after growing the MgO layer. This behavior was confirmed by testing the electronic and chemical properties of a unique atomic plane of Mn grown on a Fe buffer layer, before and after growing a MgO layer on top of it.  相似文献   

9.
In this paper a comparative study of different wet-chemical etching procedures of vicinal Si(1 1 1) surface passivation is presented. The stability against oxidation under ambient atmosphere was studied by X-ray photoelectron spectroscopy and atomic force microscopy. The best results were achieved by the buffered HF etching and the final smoothing of the surface by hot (72 °C) NH4F. The procedures consisting of a large number of etching steps were unsatisfactory, since the probability of contamination during each step was increasing. The passivated surface was stable against oxidation for at least 3 h under ambient atmosphere.  相似文献   

10.
The effect of the dopants of Cr and V on the optoelectronic properties of AZO thin film by pulsed DC magnetron sputtering has been investigated. We also use HCl and KOH solutions to conduct the chemical stability of AZO:Cr:V thin film. The experimental results show that the optimum AZO optoelectronic properties without Cr and V doping obtain the resistivity of 9.87 × 10−4 Ω cm, optical transmittance of 84% and surface roughness rms value of 2.6 nm. The chemical stability of AZO will increase after Cr and V doping. Under the added V = 0.19 wt.%, Cr = 0.56 wt.%, AZO:Cr:V thin film showed 52% increased chemical stability and 128% decrease in surface roughness after etching (the resistivity was 3.62 × 10−3 Ω cm and optical transmittance 81%). From the experimental results, the higher resistivity obtained after KOH etching compared with after HCl etching. The reason is that the Zn/Al ratio will reduce after etching and cause the AZO film carrier density to reduce as well. However, the optical transmittance obtained after KOH etching will be higher than that after HCl etching. This is because that a better surface roughness after KOH etching obtained than after HCl etching.  相似文献   

11.
The photoluminescence (PL) of the annealed and amorphous silicon passivated porous silicon with blue emission has been investigated. The N-type and P-type porous silicon fabricated by electrochemical etching was annealed in the temperature range of 700-900 °C, and was coated with amorphous silicon formed in a plasma-enhanced chemical vapor deposition (PECVD) process. After annealing, the variation of PL intensity of N-type porous silicon was different from that of P-type porous silicon, depending on their structure. It was also found that during annealing at 900 °C, the coated amorphous silicon crystallized into polycrystalline silicon, which passivated the irradiative centers on the surface of porous silicon so as to increase the intensity of the blue emission.  相似文献   

12.
We propose a reactive ion etching (RIE) process of an L10-FePt film which is expected as one of the promising materials for the perpendicular magnetic recording media. The etching was carried out using an inductively coupled plasma (ICP) RIE system and an etching gas combination of CH4/O2/NH3 was employed. The L10-FePt films were deposited on (1 0 0)-oriented MgO substrates using a magnetron sputtering system. The etching masks of Ti were patterned on the FePt films lithographically. The etch rates of ∼16 and ∼0 nm/min were obtained for the FePt film and the Ti mask, respectively. The atomic force microscopy (AFM) analyses provided the average roughness (Ra) value of 0.95 nm for the etched FePt surface, that is, a very flat etched surface was obtained. Those results show that the highly selective RIE process of L10-FePt was successfully realized in the present study.  相似文献   

13.
SiGe islands grown by deposition of 10 monolayers of Ge on Si(0 0 1) at 740 °C were investigated by using a combination of selective wet chemical etching and atomic force microscopy. The used etchant, a solution consisting of ammonium hydroxide and hydrogen peroxide, shows a high selectivity of Ge over SixGe1−x and is characterized by relatively slow etching rates for Si-rich alloys. By performing successive etching experiments on the same sample area, we are able to gain a deeper insight into the lateral displacement the islands undergo during post growth annealing.  相似文献   

14.
Crystalline magnesium oxide (MgO) (1 1 1), 20 Å thick, was grown by molecular beam epitaxy (MBE) on hydrogen cleaned hexagonal silicon carbide (6H-SiC). The films were further heated to 740 °C and 650 °C under different oxygen environments in order to simulate processing conditions for subsequent functional oxide growth. The purpose of this study was to determine the effectiveness and stability of crystalline MgO films and the MgO/6H-SiC interface for subsequent heteroepitaxial deposition of multi-component, functional oxides by MBE or pulsed laser deposition processes. The stability of the MgO films and the MgO/6H-SiC interface was found to be dependent on substrate temperature and the presence of atomic oxygen. The MgO films and the MgO/6H-SiC interface are stable at temperatures up to 740 °C at 1.0 × 10−9 Torr for extended periods of time. While at temperatures below 400 °C exposure to the presence of active oxygen for extended periods of time has negligible impact, exposure to the presence of active oxygen for more than 5 min at 650 °C will degrade the MgO/6H-SiC interface. Concurrent etching and interface breakdown mechanisms are hypothesized to explain the observed effects. Further, barium titanate was deposited by MBE on bare 6H-SiC(0 0 0 1) and MgO(1 1 1)/6H-SiC(0 0 0 1) in order to evaluate the effectiveness of the MgO as a heteroepitaxial template layer for perovskite ferroelectrics.  相似文献   

15.
The surface quality of CdZnTe plays an important role in the performance of sensors based on this material. In this paper the effect of chemical etching on Cd0.9Zn0.1Te sensor performance was examined. Sample surfaces were treated with the same concentration 2% Br-MeOH for different etching times (30 s, 2, 4, 6, 8 min). The surfaces were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and I-V Measurement. These results demonstrate that the best surface quality can be obtained by chemical etching for 30 s. Under these experimental conditions, the surface composition Te/Cd + Zn approaches 1, the roughness is lower than 3 nm, and the leakage current shows a value lower than 10 nA.  相似文献   

16.
The coarsening of phosphorus-mediated Ge quantum dots (QDs) on Si(0 0 1) during in-situ annealing at 550 °C is studied. In-situ annealing makes the as-grown sample morphology be remarkably changed: the larger dots are formed and the dot density is greatly reduced. The results of chemical etching and Raman spectra reveal that the incorporation of Ge atoms which originate from the diminishing dots, rather than substrate Si atom incorporation is responsible for the dot coarsening at the incipient stage of in-situ annealing. Besides, Raman spectra suggest that the larger dots formed during in-situ annealing are dislocated, which was confirmed by cross-sectional high-resolution electron microscopy observation. Through the generation of dislocations, the strain in the dots is relaxed by about 50%.  相似文献   

17.
The surface structure of GaAs(1 0 0), (1 1 1)A, and (1 1 1)B substrates nitrided through the wet chemical treatment in hydrazine-sulfide solution have been studied by scanning tunneling microscopy (STM) under annealing in UHV. Such treatment has earlier been shown to produce a monolayer of gallium nitride on the (1 0 0)GaAs surface. The as-nitrided substrates of all surface orientations were found to be covered by an overfilm, which contains thioarsenic compounds and has a smooth relief. Thermal desorption of the overlfilm at about 530 °C opens the own relief of the nitrided surfaces. For the (1 0 0) orientation such relief is not microscopically planar and consists of nano-scale vicinal hillocks. These hillocks occur due to surface microetching which proceeds simultaneously with the formation of the surface nitride layer. We have shown that the wet nitridation procedure forms a monolayer of surface nitride on the (1 1 1)B surface. During nitridation the (1 1 1)B surface, as well as the (1 0 0) one, is affected by the microetching in the hydrazine-sulfide solution. Therefore, it exhibits a characteristic relief formed by triangular vicinal pyramids. At the same time the nitride film is not formed on the (1 1 1)A surface, which is more chemically inert, and where the surface etching is almost absent.  相似文献   

18.
The changes in morphology and chemical states of Si(1 0 0) surface upon dipping in ultrapure water were investigated by using atomic force microscope and X-ray photoelectron spectroscopy. The oxidation and the etching competitively progressed at the HF-treated Si(1 0 0) surface in ultrapure water, which made the smooth surface rough. However, the surface covered with a thick native oxide film was not etched at all. During the repetition of the oxidation and the etching, the SiO2-nuclei was, by chance, able to grow up to some size of islands and worked as the protective barrier against the water etching. Thus, the SiO2-islands would remain without being etched off, whereas rest parts of the surface could be etched off. This selective etching leads the surface morphology to become rough. Both the oxidation and the etching progressed violently as the water temperature and the dipping time increased.  相似文献   

19.
We characterized the surface defects in a-plane GaN, grown onto r-plane sapphire using a defect-selective etching (DSE) method. The surface morphology of etching pits in a-plane GaN was investigated by using different combination ratios of H3PO4 and H2SO4 etching media. Different local etching rates between smooth and defect-related surfaces caused variation of the etch pits made by a 1:3 ratio of H3PO4/H2SO4 etching solution. Analysis results of surface morphology and composition after etching by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrated that wet chemical etching conditions could show the differences in surface morphology and chemical bonding on the a-plane GaN surface. The etch pits density (EPD) was determined as 3.1 × 108 cm−2 by atom force microscopy (AFM).  相似文献   

20.
A SiGe-on-insulator (SGOI) structure with high Ge content and low density of dislocations is fabricated by a modified Ge condensation technique. The formation and elimination of stacking faults during condensation process are analyzed by transmission electron microscopy. A Si0.19Ge0.81OI substrate is fabricated utilizing two steps of oxidation and intermittent annealing. The time of oxidation or annealing at 900 °C is essential for the elimination of stacking faults in high Ge content SGOI substrate. The surface morphology of SGOI is investigated by atomic force microscopy and the defect density is evaluated from wet etching method. After the final condensation, the surface root-mean-square roughness (rms) of SiGe layer is kept below 1 nm and the threading defect density is controlled around 104 cm−2. The smooth surface and integrated lattice structure of SiGe layer indicate that the SGOI is suitable for heteroepitaxial growth of strained Ge, GaAs and III-V compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号